VarEst: Estimation of the dispersion parameters in a beta-binomial...

Description Usage Arguments Details Value Author(s) References See Also

Description

VarEst function performs a mamximum likelihood estimation of the dispersion parameters in a beta-binomial mixed-effects models given some initial values.

Usage

1
VarEst(y,m,p,X,Z,u,nRand,nComp,nRandComp,OLDall.sigma,OLDphi,q)

Arguments

y

dependent response variable in the model.

m

maximum score number in each beta-binomial observation.

p

estimated values of the probability parameter.

X

model matrix of the fixed effects.

Z

model matrix of the random effects.

u

estimated values of the random-effects.

nRand

number of random effects in the model.

nComp

number of random effects components, i.e., number of different random effects.

nRandComp

the number of random effects in each random component of the model. It must be especified as a vector, where the 'i'th value must correspond with the number of random effects of the 'i'th random component

OLDall.sigma

initial values of the variance parameters of the random effects.

OLDphi

initial value of the dispersion parameter of the beta-binomial distribution.

q

number of independent variables or covariates in the fixed part of the model.

Details

VarEst function performs a mamximum likelihood estimation of the dispersion parameters in a beta-binomial mixed-effects models given some initial values.

It uses the multiroot and uniroot functions of the rootSolve R-package.

Value

VarEst returns a list of estimates and variance of the dispersion parameters.

(phi=phi,all.sigma=all.sigma,psi=psi,psi.var=psi.var,all.sigma.var=sigma.var)

phi

estimated value of the dispersion parameter in the beta-binomial distribution.

all.sigma

estimated value of the variances of the random effects.

psi

estimated value of the logarithm of the dispersion parameter in the beta-binomial distribution.

psi.var

variance of the estimated value of the logarithm of the dispersion parameter in the beta-binomial distribution.

all.sigma.var

variance of the estimated value of the variances of the random effects.

Author(s)

J. Najera-Zuloaga

D.-J. Lee

I. Arostegui

References

Breslow N. E. & Calyton D. G. (1993): Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, 88, 9-25

Lee Y. & Nelder J. A. (1996): Hierarchical generalized linear models, Journal of the Royal Statistical Society. Series B, 58, 619-678

Najera-Zuloaga J., Lee D.-J. & Arostegui I. (2018): A beta-binomial mixed-effects model approach for analysing longitudinal discrete and bounded outcomes, Biometrical Journal.

See Also

The multiroot and uniroot functions of the R-package rootSolve for the general Newton-Raphson algorithm.


idaejin/PROreg documentation built on May 9, 2019, 5:04 a.m.