Description Usage Arguments Details Value Author(s) References See Also
VarEst
function performs a mamximum likelihood estimation of the dispersion parameters in a beta-binomial mixed-effects models given some initial values.
1 |
y |
dependent response variable in the model. |
m |
maximum score number in each beta-binomial observation. |
p |
estimated values of the probability parameter. |
X |
model matrix of the fixed effects. |
Z |
model matrix of the random effects. |
u |
estimated values of the random-effects. |
nRand |
number of random effects in the model. |
nComp |
number of random effects components, i.e., number of different random effects. |
nRandComp |
the number of random effects in each random component of the model. It must be especified as a vector, where the 'i'th value must correspond with the number of random effects of the 'i'th random component |
OLDall.sigma |
initial values of the variance parameters of the random effects. |
OLDphi |
initial value of the dispersion parameter of the beta-binomial distribution. |
q |
number of independent variables or covariates in the fixed part of the model. |
VarEst
function performs a mamximum likelihood estimation of the dispersion parameters in a beta-binomial mixed-effects models given some initial values.
It uses the multiroot
and uniroot
functions of the rootSolve
R-package.
VarEst
returns a list of estimates and variance of the dispersion parameters.
(phi=phi,all.sigma=all.sigma,psi=psi,psi.var=psi.var,all.sigma.var=sigma.var)
phi |
estimated value of the dispersion parameter in the beta-binomial distribution. |
all.sigma |
estimated value of the variances of the random effects. |
psi |
estimated value of the logarithm of the dispersion parameter in the beta-binomial distribution. |
psi.var |
variance of the estimated value of the logarithm of the dispersion parameter in the beta-binomial distribution. |
all.sigma.var |
variance of the estimated value of the variances of the random effects. |
J. Najera-Zuloaga
D.-J. Lee
I. Arostegui
Breslow N. E. & Calyton D. G. (1993): Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, 88, 9-25
Lee Y. & Nelder J. A. (1996): Hierarchical generalized linear models, Journal of the Royal Statistical Society. Series B, 58, 619-678
Najera-Zuloaga J., Lee D.-J. & Arostegui I. (2018): A beta-binomial mixed-effects model approach for analysing longitudinal discrete and bounded outcomes, Biometrical Journal.
The multiroot
and uniroot
functions of the R-package rootSolve
for the general Newton-Raphson algorithm.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.