Description Usage Arguments Details Value Author(s) References See Also
EffectsEst.multiroot
function performs a maximum likelihood estimation of the fixed and random effects in a beta-binomial mixed-effects model given some initial values.
It uses the multiroot
function of the rootSolve
R-package.
1 | EffectsEst.multiroot(y,m,beta,u,phi,D.,X,Z)
|
y |
dependent response variable in the model. |
m |
maximum score number in each beta-binomial observation. |
beta |
initial values of the fixed-effects. |
u |
initial values of the random-effects. |
phi |
estimated value of the dispersion parameter of the beta-binomial distribution. |
D. |
estimated value of the variance-covariance matrix of the random effects. |
X |
model matrix of the fixed effects. |
Z |
model matrix of the random effects. |
EffectsEst.multiroot
function performs a mamximum likelihood estimation of the fixed and random effects in a beta-binomial mixed-effects models given some initial values.
It uses the multiroot
function of the rootSolve
R-package.
EffectsEst.multiroot
returns a list of the estimates and variances of the fixed and random effects.
fixed.est |
estimated value of the fixed coefficients of the regression. |
random.est |
estimated value of the random coefficients of the regression. |
vcov.fixed |
variance-covariance matrix of the estiamtion of the fixed-effects. |
var.random |
variance of the estimation of the random effects. |
iter.fixrand |
numbero of iterations in the algorithm. |
conv.fixrand |
convergence og the algorithm. |
J. Najera-Zuloaga
D.-J. Lee
I. Arostegui
Breslow N. E. & Calyton D. G. (1993): Approximate Inference in Generalized Linear Mixed Models, Journal of the American Statistical Association, 88, 9-25.
Lee Y. & Nelder J. A. (1996): Hierarchical generalized linear models, Journal of the Royal Statistical Society. Series B, 58, 619-678.
Najera-Zuloaga J., Lee D.-J. & Arostegui I. (2018): A beta-binomial mixed-effects model approach for analysing longitudinal discrete and bounded outcomes, to appear in Biometrical Journal.
The multiroot
function of the R-package rootSolve
for the general Newton-Raphson algorithm.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.