#' Causal convolution layer, masks out future (look-ahead) sequences
#' @export
layer_causal_conv1d <-
function(object,
filters,
kernel_size,
strides = 1L,
dilation_rate = 1L,
activation = NULL,
use_bias = TRUE,
kernel_initializer = tf$keras$initializers$glorot_uniform(),
bias_initializer = tf$keras$initializers$zeros(),
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
trainable = TRUE,
name = "causal_conv1d",
...) {
layer_lambda(object, function(x) {
filters %<>% as.integer()
kernel_size %<>% as.integer()
strides %<>% as.integer()
dilation_rate %<>% as.integer()
padding <- (kernel_size - 1L) * dilation_rate
input <- x %>% tf$pad(tf$constant(list(c(0L, 0L),
c(1L * padding, 0L),
c(0L, 0L))))
layer_conv_1d(
input,
filters = filters,
kernel_size = kernel_size,
strides = strides,
dilation_rate = dilation_rate,
activation = activation,
use_bias = use_bias,
kernel_initializer = kernel_initializer,
bias_initializer = bias_initializer,
bias_regularizer = bias_regularizer,
activity_regularizer = activity_regularizer,
kernel_constraint = kernel_constraint,
bias_constraint = bias_constraint,
trainable = trainable,
name = name
)
}, ...)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.