urf_test: urf_test computes UNAIR variable importances and uses them...

View source: R/09_urf_test.R

urf_testR Documentation

urf_test computes UNAIR variable importances and uses them for the Janitza et al. (2018) high-dimensional testing procedure.

Description

urf_test computes UNAIR variable importances and uses them for the Janitza et al. (2018) high-dimensional testing procedure.

Usage

urf_test(data, target = "target", resampling_seed, ...)

Arguments

data

[data.frame] original data

target

[character] name of the artificial target variable

resampling_seed

[integer] resampling seed

...

more parameters to pass to ranger

Value

[data.table] with variable importances and p-values

Author(s)

Cesaire J. K. Fouodo

References

Janitza, S, Celik, E, Boulesteix, AL. (2018). A computationally fast variable importance test for random forests for high-dimensional data. Adv Data Anal Classif.; doi.org: 10.1007/s11634-016-0276-4 Cesaire J. K. Fouodo, Inke R. König Silke Szymczak (2022) Computing variable importance with unsupervised random forests. In review process.


imbs-hl/pranger documentation built on May 15, 2022, 5:27 p.m.