# Created by use_targets().
# Follow the comments below to fill in this target script.
# Then follow the manual to check and run the pipeline:
# https://books.ropensci.org/targets/walkthrough.html#inspect-the-pipeline # nolint
# Load packages required to define the pipeline:
library(targets)
library(rgee)
library(rlang)
library(dplyr)
# test gh
rgee::ee_Initialize(drive=T)
# library(tarchetypes) # Load other packages as needed. # nolint
# Set target options:
# tar_option_set(envir= getNamespace("surveyGEER"))
tar_option_set(
packages = c("tidyverse",
"rgee",
"lubridate",
# "rstudioapi",
"here",
"tidyrgee",
"sf"
),
# imports = "surveyGEER",
# envir = getNamespace("surveyGEER"),
# packages that your targets need to run
format = "rds" # default storage format
# Set other options as needed.
)
# tar_make_clustermq() configuration (okay to leave alone):
options(clustermq.scheduler = "multiprocess")
# tar_make_future() configuration (okay to leave alone):
# Install packages {{future}}, {{future.callr}}, and {{future.batchtools}} to allow use_targets() to configure tar_make_future() options.
# Load the R scripts with your custom functions:
lapply(list.files("R", full.names = TRUE, recursive = TRUE), source)
# source("other_functions.R") # Source other scripts as needed. # nolint
# cntry_code <- c("col")
# Replace the target list below with your own:
# Colombia Targets
list(
# Colombia ----------------------------------------------------------------
tar_target(
name = col_pt_data_clean,
command = load_clean_col_assessement_points(country_code = "col")
),
tar_target(
name=col_oxford_access,
command= extract_oxford_access_indicators(geom_sf = col_pt_data_clean,img_scale = 928)
),
tar_target(
name= col_landforms,
command = extract_geomorph_landform_indicators(col_pt_data_clean,img_scale=90)
),
tar_target(
name= col_landforms_reclassified,
command= recode_srtm_alos_categorical(df = col_landforms)
),
tar_target(
name= col_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=col_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= col_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(col_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= col_chirps_spi,
command= extract_spi_to_values(geom_sf=col_pt_data_clean,moi=5)
),
tar_target(
name= col_npp,
command= extract_npp_indicators(geom_sf = col_pt_data_clean,img_scale = 500)
),
tar_target(
# need to build in range to composte over for colombia... 1 month == too cloudy....3 months still 40 % clouds
# might be worth looking at 6 months and a year.
name= col_air_quality,
command= extract_s5p_air_quality(geom_sf = col_pt_data_clean,yoi=2022, moi=5, img_scale=111320)
),
tar_target(
name= col_dist_to_coast,
command= extract_dist_to_coast(geom_sf=col_pt_data_clean,country_code = "col",pt_density = 100)
),
tar_target(
name = col_prev_3mo_drought_modis_basea,
command = extract_monthly_modis_drought(geom_sf=col_pt_data_clean,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= col_prev_3mo_drought_modis_basea_prepped,
command = prep_rs_modis_target(col_prev_3mo_drought_modis_basea)
),
tar_target(name= col_local_value,
command=extract_local_values_to_points(schema = "col",
country_code = "col",
geom_sf = col_pt_data_clean)
),
tar_target(
name= col_local_value_merged,
command= merge_local_layers(col_local_value)
),
tar_target(
name = col_rs_indicators_long,
command= format_rs_indicators_long(country_code = "col",
col_pt_data_clean,
col_chirps_rainfall_intensity_prepped,
col_prev_3mo_drought_modis_basea_prepped,
col_chirps_spi,
col_dist_to_coast,
col_landforms_reclassified,
col_oxford_access,
col_npp,col_air_quality,
col_local_value_merged
)
),
tar_target(
name = col_rs_indicators_wide,
command= format_rs_indicators_wide(col_rs_indicators_long)
),
# Nigeria -----------------------------------------------------------------
tar_target(nga_file,
"data/msna/20221102_nga_coords_anonymized.rds", format = "file"
),
tar_target(
name = nga_pt_data_clean,
command = load_clean_assessement_points2(fp=nga_file,country_code = "nga")
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=nga_oxford_access,
command= extract_oxford_access_indicators(geom_sf = nga_pt_data_clean,img_scale = 928)
),
tar_target(
name= nga_landforms,
command = extract_geomorph_landform_indicators(nga_pt_data_clean,img_scale=90)
),
tar_target(
name= nga_landforms_reclassified,
command= recode_srtm_alos_categorical(df = nga_landforms)
),
tar_target(
name= nga_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=nga_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= nga_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(nga_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= nga_chirps_spi,
command= extract_spi_to_values(geom_sf=nga_pt_data_clean,moi=5)
),
tar_target(
name= nga_npp,
command= extract_npp_indicators(geom_sf = nga_pt_data_clean,img_scale = 500)
),
tar_target(
name= nga_air_quality,
command= extract_s5p_air_quality(geom_sf = nga_pt_data_clean,yoi=2022, moi=4, img_scale=111320)
),
tar_target(
name= nga_growing_season_lengths,
command= extract_growing_season_length_viirs(geom_sf = nga_pt_data_clean,yoi=2013:2022,scale=500)
),
tar_target(
name = nga_mo345_veg_basea,
command = extract_monthly_modis_drought(geom_sf=nga_pt_data_clean,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= nga_mo345_veg_basea_prepped,
command = prep_rs_modis_target(nga_mo345_veg_basea)
),
# tar_target(
# name = nga_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# should be sometheing inside chirps_spi/rolling_statistic
# ),
tar_target(name= nga_ndvi_growing_season_z,
command=extract_modis_ndvi_anomaly(
geom_sf=nga_pt_data_clean,
baseline_years = 2000:2021,
date_range = c("2021-06-20", "2021-09-26"),
range_label = "growing_season",scale= 250
)),
tar_target(name= nga_ndvi_growing_season_z,
command=extract_modis_ndvi_anomaly(
geom_sf=nga_pt_data_clean,
baseline_years = 2000:2021,
date_range = c("2021-06-20", "2021-09-26"),
range_label = "growing_season",scale= 250
)),
tar_target(name= nga_local_value,
command=extract_local_values_to_points(schema = "public",country_code="nga",
geom_sf = nga_pt_data_clean)
),
### NGA Local ####
tar_target(
name= nga_local_value_merged,
command= merge_local_layers(nga_local_value)
),
tar_target(
name = nga_rs_indicators_long,
command= format_rs_indicators_long(country_code= "nga",nga_pt_data_clean,
nga_chirps_rainfall_intensity_prepped,
nga_mo345_veg_basea_prepped,
nga_chirps_spi,
# nga_dist_to_coast,
nga_landforms_reclassified,
nga_oxford_access,
nga_ndvi_growing_season_z,
nga_npp,nga_air_quality,
nga_local_value_merged
)
),
tar_target(
name = nga_rs_indicators_wide,
command= format_rs_indicators_wide(nga_rs_indicators_long)
),
# Iraq -----------------------------------------------------------------
tar_target(
name = irq_pt_data_clean,
command = load_clean_assessement_points(country_code = "irq")
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=irq_oxford_access,
command= extract_oxford_access_indicators(geom_sf = irq_pt_data_clean |>
select(-date_assessment),img_scale = 928)
),
tar_target(
name= irq_landforms,
command = extract_geomorph_landform_indicators(irq_pt_data_clean |>
select(-date_assessment),img_scale=90)
),
tar_target(
name= irq_landforms_reclassified,
command= recode_srtm_alos_categorical(df = irq_landforms)
),
tar_target(
name= irq_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=irq_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= irq_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(irq_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= irq_chirps_spi,
command= extract_spi_to_values(geom_sf=irq_pt_data_clean |>
select(-date_assessment))
),
tar_target(
name= irq_npp,
command= extract_npp_indicators(geom_sf = irq_pt_data_clean |>
select(-date_assessment),
img_scale = 500)
),
tar_target(
# need to build in range to composte over for colombia... 1 month == too cloudy....3 months still 40 % clouds
# might be worth looking at 6 months and a year.
name= irq_air_quality,
command= extract_s5p_air_quality(geom_sf = irq_pt_data_clean |>
select(-date_assessment),yoi=2022, moi=5, img_scale=111320)
),
tar_target(
name= irq_dist_to_coast,
command= extract_dist_to_coast(geom_sf=irq_pt_data_clean |>
select(-date_assessment),country_code = "irq",pt_density = 100)
),
tar_target(
name = irq_mo345_veg_basea ,
command = extract_monthly_modis_drought(geom_sf=irq_pt_data_clean |>
select(-date_assessment),
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= irq_mo345_veg_basea_prepped,
command = prep_rs_modis_target(irq_mo345_veg_basea)
),
tar_target(
name=irq_closest_water_pixel_perm_prepped,
command = extract_nearest_water_pixel_distance(y = irq_pt_data_clean |>
select(-date_assessment), water_type = "permanent",scale = 30, via="drive")
),
tar_target(
name = irq_landcover,
command= extract_landcover_class(geom_sf = irq_pt_data_clean |>
select(-date_assessment),landcover = list("esa","esri"))
),
# tar_target(
# name = irq_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# should be sometheing inside chirps_spi/rolling_statistic
# ),
### Local ####
# tar_target(name= irq_local_value,
# command=extract_local_values_to_points(schema = "public",country_code="irq",
# geom_sf = irq_pt_data_clean)
# ),
# tar_target(
# name= irq_local_value_merged,
# command= merge_local_layers(irq_local_value)
# ),
tar_target(
name = irq_rs_indicators_long,
command= format_rs_indicators_long(country_code= "irq",irq_pt_data_clean |>
select(-date_assessment),
irq_chirps_rainfall_intensity_prepped,
irq_mo345_veg_basea_prepped,
irq_closest_water_pixel_perm_prepped,
irq_chirps_spi,
# irq_dist_to_coast,
irq_landforms_reclassified,
irq_oxford_access,
irq_npp,
irq_air_quality,
irq_landcover
# irq_local_value_merged
)
),
tar_target(
name = irq_rs_indicators_wide,
command= format_rs_indicators_wide(irq_rs_indicators_long)
),
# SOM -----------------------------------------------------------------
tar_target(
name = som_pt_data_clean,
command = load_clean_assessement_points(country_code = "som")
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=som_oxford_access,
command= extract_oxford_access_indicators(geom_sf = som_pt_data_clean,img_scale = 928)
),
tar_target(
name= som_landforms,
command = extract_geomorph_landform_indicators(som_pt_data_clean ,img_scale=90)
),
tar_target(
name= som_landforms_reclassified,
command= recode_srtm_alos_categorical(df = som_landforms)
),
tar_target(
name= som_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=som_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= som_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(som_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= som_chirps_spi,
command= extract_spi_to_values(geom_sf=som_pt_data_clean,mo_lags= list(1,3,6,9,12),moi=5)
),
tar_target(
name= som_chirps_spi_june,
command= extract_spi_to_values(geom_sf=som_pt_data_clean,mo_lags= list(1,3,6,9,12),moi=6)
),
tar_target(
name= som_chirps_spi_july,
command= extract_spi_to_values(geom_sf=som_pt_data_clean,mo_lags= list(1,3,6,9,12),moi=7)
),
# tar_target(
# name= som_npp,
# command= extract_npp_indicators(geom_sf = som_pt_data_clean ,
# img_scale = 500)
# ),
tar_target(
name= som_air_quality,
command= extract_s5p_air_quality(geom_sf = som_pt_data_clean ,yoi=2022, moi=5, img_scale=111320)
),
tar_target(
name= som_dist_to_coast,
command= extract_dist_to_coast(geom_sf=som_pt_data_clean ,country_code = "som",pt_density = 100)
),
tar_target(
name = som_mo345_veg_basea ,
command = extract_monthly_modis_drought(geom_sf=som_pt_data_clean ,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name = som_mo678_veg_basea ,
command = extract_monthly_modis_drought(geom_sf=som_pt_data_clean ,
baseline_years = c(2000:2015),
moi = c(6,7,8),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= som_mo345_veg_basea_prepped,
command = prep_rs_modis_target(som_mo345_veg_basea)
),
tar_target(
name= som_mo678_veg_basea_prepped,
command = prep_rs_modis_target(som_mo678_veg_basea)
),
tar_target(
name=som_closest_water_pixel_perm_prepped,
command = extract_nearest_water_pixel_distance(y = som_pt_data_clean, water_type = "permanent",scale = 30, via="drive")
),
tar_target(
name = som_landcover,
command= extract_landcover_class(geom_sf = som_pt_data_clean,landcover = list("esa","esri"))
),
# tar_target(
# name = som_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# # should be sometheing inside chirps_spi/rolling_statistic
# # ),
#
#
#
tar_target(name= som_local_value,
command=extract_local_values_to_points(schema = "public",country_code="som",
geom_sf = som_pt_data_clean)
),
tar_target(
name= som_local_value_merged,
command= merge_local_layers(som_local_value)
),
tar_target(
name = som_rs_indicators_long,
command= format_rs_indicators_long(country_code= "som",
som_pt_data_clean,
som_chirps_rainfall_intensity_prepped,
som_mo345_veg_basea_prepped,
som_mo678_veg_basea_prepped,
som_closest_water_pixel_perm_prepped,
som_chirps_spi,
som_chirps_spi_june,
som_dist_to_coast,
som_landforms_reclassified,
som_oxford_access,
# som_npp,
som_air_quality,
som_landcover,
som_local_value_merged
)
),
tar_target(
name = som_rs_indicators_wide,
command= format_rs_indicators_wide(som_rs_indicators_long)
),
# NER -----------------------------------------------------------------
tar_target(
name = ner_pt_data_clean,
command = load_clean_assessement_points(country_code = "ner") |> select(-today)
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=ner_oxford_access,
command= extract_oxford_access_indicators(geom_sf = ner_pt_data_clean,img_scale = 928)
),
tar_target(
name= ner_landforms,
command = extract_geomorph_landform_indicators(ner_pt_data_clean ,img_scale=90)
),
tar_target(
name= ner_landforms_reclassified,
command= recode_srtm_alos_categorical(df = ner_landforms)
),
tar_target(
name= ner_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=ner_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= ner_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(ner_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= ner_chirps_spi,
command= extract_spi_to_values(geom_sf=ner_pt_data_clean,mo_lags= list(1,3,6,9,12),moi=5)
),
# tar_target(
# name= ner_npp,
# command= extract_npp_indicators(geom_sf = ner_pt_data_clean ,
# img_scale = 500)
# ),
tar_target(
name= ner_air_quality,
command= extract_s5p_air_quality(geom_sf = ner_pt_data_clean ,yoi=2022, moi=5, img_scale=111320)
),
tar_target(
name= ner_dist_to_coast,
command= extract_dist_to_coast(geom_sf=ner_pt_data_clean ,country_code = "som",pt_density = 100)
),
tar_target(
name = ner_mo345_veg_basea ,
command = extract_monthly_modis_drought(geom_sf=ner_pt_data_clean ,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= ner_mo345_veg_basea_prepped,
command = prep_rs_modis_target(ner_mo345_veg_basea)
),
tar_target(
name=ner_closest_water_pixel_perm_prepped,
command = extract_nearest_water_pixel_distance(y = ner_pt_data_clean, water_type = "permanent",scale = 30, via="drive")
),
tar_target(
name = ner_landcover,
command= extract_landcover_class(geom_sf = ner_pt_data_clean,landcover = list("esa","esri"))
),
# tar_target(
# name = ner_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# # should be sometheing inside chirps_spi/rolling_statistic
# # ),
#
#
#
# tar_target(name= ner_local_value,
# command=extract_local_values_to_points(schema = "public",country_code="ner",
# geom_sf = ner_pt_data_clean)
# ),
# tar_target(
# name= ner_local_value_merged,
# command= merge_local_layers(ner_local_value)
# ),
tar_target(
name = ner_rs_indicators_long,
command= format_rs_indicators_long(country_code= "ner",
ner_pt_data_clean,
ner_chirps_rainfall_intensity_prepped,
ner_mo345_veg_basea_prepped,
ner_closest_water_pixel_perm_prepped,
ner_chirps_spi,
ner_dist_to_coast,
ner_landforms_reclassified,
ner_oxford_access,
# ner_npp,
ner_air_quality,
ner_landcover
# ner_local_value_merged
)
),
tar_target(
name = ner_rs_indicators_wide,
command= format_rs_indicators_wide(ner_rs_indicators_long)
),
# HTI -----------------------------------------------------------------
tar_target(
name = hti_pt_data_clean,
command = load_clean_assessement_points(country_code = "hti")
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=hti_oxford_access,
command= extract_oxford_access_indicators(geom_sf = hti_pt_data_clean,img_scale = 928)
),
tar_target(
name= hti_landforms,
command = extract_geomorph_landform_indicators(hti_pt_data_clean ,img_scale=90)
),
tar_target(
name= hti_landforms_reclassified,
command= recode_srtm_alos_categorical(df = hti_landforms)
),
tar_target(
name= hti_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=hti_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= hti_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(hti_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= hti_chirps_spi,
command= extract_spi_to_values(geom_sf=hti_pt_data_clean,mo_lags= list(1,3,6,9,12),moi=5)
),
tar_target(
name= hti_npp,
command= extract_npp_indicators(geom_sf = hti_pt_data_clean ,
img_scale = 500)
),
tar_target(
name= hti_air_quality,
command= extract_s5p_air_quality(geom_sf = hti_pt_data_clean ,yoi=2022, moi=5, img_scale=111320)
),
tar_target(
name= hti_dist_to_coast,
command= extract_dist_to_coast(geom_sf=hti_pt_data_clean ,country_code = "som",pt_density = 100)
),
tar_target(
name = hti_mo345_veg_basea ,
command = extract_monthly_modis_drought(geom_sf=hti_pt_data_clean ,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= hti_mo345_veg_basea_prepped,
command = prep_rs_modis_target(hti_mo345_veg_basea)
),
tar_target(
name=hti_closest_water_pixel_perm_prepped,
command = extract_nearest_water_pixel_distance(y = hti_pt_data_clean, water_type = "permanent",scale = 30, via="drive")
),
tar_target(
name = hti_landcover,
command= extract_landcover_class(geom_sf = hti_pt_data_clean,landcover = list("esa","esri"))
),
# tar_target(
# name = hti_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# # should be sometheing inside chirps_spi/rolling_statistic
# # ),
#
#
#
# tar_target(name= hti_local_value,
# command=extract_local_values_to_points(schema = "public",country_code="hti",
# geom_sf = hti_pt_data_clean)
# ),
# tar_target(
# name= hti_local_value_merged,
# command= merge_local_layers(hti_local_value)
# ),
tar_target(
name = hti_rs_indicators_long,
command= format_rs_indicators_long(country_code= "hti",
hti_pt_data_clean,
hti_chirps_rainfall_intensity_prepped,
hti_mo345_veg_basea_prepped,
hti_closest_water_pixel_perm_prepped,
hti_chirps_spi,
hti_dist_to_coast,
hti_landforms_reclassified,
hti_oxford_access,
hti_npp,
hti_air_quality,
hti_landcover
# hti_local_value_merged
)
),
tar_target(
name = hti_rs_indicators_wide,
command= format_rs_indicators_wide(hti_rs_indicators_long)
),
# HSMV - CAR --------------------------------------------------------------
tar_target(car_hsmv_file,
fetch_msna_path(country_code = "car"), format = "file"
),
tar_target(
name = car_hsmv_pt_data_clean,
command = load_clean_assessement_points2(fp=car_hsmv_file,country_code = "car")
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=car_oxford_access,
command= extract_oxford_access_indicators(geom_sf = car_hsmv_pt_data_clean,img_scale = 928)
),
tar_target(
name= car_landforms,
command = extract_geomorph_landform_indicators(car_hsmv_pt_data_clean,img_scale=90)
),
tar_target(
name= car_landforms_reclassified,
command= recode_srtm_alos_categorical(df = car_landforms)
),
tar_target(
name= car_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=car_hsmv_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= car_chirps_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(car_chirps_rainfall_intensity,moi=5)
),
tar_target(
name= car_chirps_spi,
command= extract_spi_to_values(geom_sf=car_hsmv_pt_data_clean,moi=5)
),
tar_target(
name= car_npp,
command= extract_npp_indicators(geom_sf = car_hsmv_pt_data_clean,img_scale = 500)
),
tar_target(
name= car_air_quality,
command= extract_s5p_air_quality(geom_sf = car_hsmv_pt_data_clean,yoi=2022, moi=4, img_scale=111320)
),
tar_target(
name= car_growing_season_lengths,
command= extract_growing_season_length_viirs(geom_sf = car_hsmv_pt_data_clean,yoi=2013:2022,scale=500)
),
tar_target(
name = car_mo345_veg_basea,
command = extract_monthly_modis_drought(geom_sf=car_hsmv_pt_data_clean,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= car_mo345_veg_basea_prepped,
command = prep_rs_modis_target(car_mo345_veg_basea)
),
# tar_target(
# name = car_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# should be sometheing inside chirps_spi/rolling_statistic
# ),
tar_target(name= car_ndvi_growing_season_z,
command=extract_modis_ndvi_anomaly(
geom_sf=car_hsmv_pt_data_clean,
baseline_years = 2000:2021,
date_range = c("2021-06-20", "2021-09-26"),
range_label = "growing_season",scale= 250
)),
tar_target(
name = car_landcover,
command= extract_landcover_class(geom_sf = car_hsmv_pt_data_clean,landcover = list("esa","esri"))
),
### car Local ####
# no local recieveid
tar_target(
name = car_rs_indicators_long,
command= format_rs_indicators_long(country_code= "car",
car_hsmv_pt_data_clean,
car_chirps_rainfall_intensity_prepped,
car_mo345_veg_basea_prepped,
car_chirps_spi,
# car_dist_to_coast,
car_landcover,
car_landforms_reclassified,
car_oxford_access,
car_ndvi_growing_season_z,
car_npp,
car_air_quality
# car_local_value_merged
)
),
tar_target(
name = car_rs_indicators_wide,
command= format_rs_indicators_wide(car_rs_indicators_long)
),
# HSMV - Compiled -------------------------------------------------------------
tar_target(hsmv_compiled_file,
"data_share/hsmv_compiled_coords_anonymized.rds", format = "file"
),
tar_target(
name = hsmv_compiled_pt_data_clean,
command =read_rds(hsmv_compiled_file)
# format = "feather" # efficient storage of large data frames # nolint
),
tar_target(
name=hsmv_compiled_oxford_access,
command= extract_oxford_access_indicators(geom_sf = hsmv_compiled_pt_data_clean,img_scale = 928)
),
tar_target(
name= hsmv_compiled_landforms,
command = extract_geomorph_landform_indicators(hsmv_compiled_pt_data_clean,img_scale=90)
),
tar_target(
name= hsmv_compiled_landforms_reclassified,
command= recode_srtm_alos_categorical(df = hsmv_compiled_landforms)
),
tar_target(
name= hsmv_compiled_chirps_rainfall_intensity,
command= extract_chirps_rain_intensity(geom_sf=hsmv_compiled_pt_data_clean,from_when="2022-05-31")
),
tar_target(
name= hsmv_compiled_rainfall_intensity_prepped,
command= prep_rs_chirps_intensity_target(hsmv_compiled_chirps_rainfall_intensity,moi=5)
),
# this is hardcoded to 2022
tar_target(
name= hsmv_compiled_chirps_spi,
command= extract_spi_to_values(geom_sf=hsmv_compiled_pt_data_clean,moi=5)
),
# made a new func to user input on year
tar_target(
name= hsmv_compiled_chirps_spi_may21,
command= extract_spi_to_values2(x =ee$ImageCollection("UCSB-CHG/CHIRPS/DAILY"),
geom_sf=hsmv_compiled_pt_data_clean,
moi=5,
mo_lags = c(1,2,3),
yoi=2021)
),
tar_target(
name= hsmv_compiled_chirps_spi_aug21,
command= extract_spi_to_values2(x =ee$ImageCollection("UCSB-CHG/CHIRPS/DAILY"),
geom_sf=hsmv_compiled_pt_data_clean,
moi=8,
mo_lags = c(1,2,3),
yoi=2021)
),
tar_target(
name= hsmv_compiled_chirps_spi_july22,
command= extract_spi_to_values2(x =ee$ImageCollection("UCSB-CHG/CHIRPS/DAILY"),
geom_sf=hsmv_compiled_pt_data_clean,
moi=7,
mo_lags = c(1,2,3),
yoi=2022)
),
tar_target(
name= hsmv_compiled_npp,
command= extract_npp_indicators(geom_sf = hsmv_compiled_pt_data_clean,img_scale = 500)
),
tar_target(
name= hsmv_compiled_air_quality,
command= extract_s5p_air_quality(geom_sf = hsmv_compiled_pt_data_clean,yoi=2022, moi=4, img_scale=111320)
),
tar_target(
name= hsmv_compiled_growing_season_lengths,
command= extract_growing_season_length_viirs(geom_sf = hsmv_compiled_pt_data_clean,yoi=2013:2022,scale=500)
),
tar_target(
name = hsmv_compiled_mo345_veg_basea,
command = extract_monthly_modis_drought(geom_sf=hsmv_compiled_pt_data_clean,
baseline_years = c(2000:2015),
moi = c(3, 4, 5),
yoi = c(2022),
scale = 250,
mask = "cloud&quality",
satellite = "terra",
TAC = T,
temporal_interpolation = T)
),
tar_target(
name= hsmv_compiled_mo345_veg_basea_prepped,
command = prep_rs_modis_target(hsmv_compiled_mo345_veg_basea)
),
# tar_target(
# name = hsmv_compiled_growing_season_mean_ndvi_z,
# command = extract_ndvi_anomay(start_date, end_date, baseline,stat)
# should be sometheing inside chirps_spi/rolling_statistic
# ),
tar_target(name= hsmv_compiled_ndvi_growing_season21_z,
command=extract_modis_ndvi_anomaly(
geom_sf=hsmv_compiled_pt_data_clean,
baseline_years = 2000:2021,
date_range = c("2021-07-01", "2021-08-31"),
range_label = "growing_season",scale= 250
)),
tar_target(
name = hsmv_compiled_landcover,
command= extract_landcover_class(geom_sf = hsmv_compiled_pt_data_clean,landcover = list("esa","esri"))
),
tar_target(
name = hsmv_compiled_rs_indicators_long,
command= format_rs_indicators_long(country_code= "hsmv_compiled",
# need to add one character col to not get the pivot_longer error
# normall the `_pt_data_clean` files have country_code from the
# start so it is not an issue, rather than re-running the whole
# target i'll just add here as a shortcut.
hsmv_compiled_pt_data_clean=hsmv_compiled_pt_data_clean |>
mutate(country_code="hsmv_compiled",.after="new_uid"),
hsmv_compiled_rainfall_intensity_prepped=hsmv_compiled_rainfall_intensity_prepped |>
mutate(country_code= "hsmv_compiled"),
hsmv_compiled_mo345_veg_basea_prepped=hsmv_compiled_mo345_veg_basea_prepped |>
mutate(country_code= "hsmv_compiled"),
## chirps
hsmv_compiled_chirps_spi=hsmv_compiled_chirps_spi |>
mutate(country_code= "hsmv_compiled") |>
rename_with(.cols = starts_with("May"),
.fn = ~str_replace(.x,pattern = "May",replacement = "May22")
),
hsmv_compiled_chirps_spi_may21= hsmv_compiled_chirps_spi_may21 |>
mutate(country_code= "hsmv_compiled") |>
rename_with(.cols = starts_with("May"),
.fn = ~str_replace(.x,pattern = "May",replacement = "May21")
),
hsmv_compiled_chirps_spi_aug21= hsmv_compiled_chirps_spi_aug21 |>
mutate(country_code= "hsmv_compiled") |>
rename_with(.cols = starts_with("Aug"),
.fn = ~str_replace(.x,pattern = "Aug",replacement = "Aug21")
),
hsmv_compiled_chirps_spi_july22= hsmv_compiled_chirps_spi_july22 |>
mutate(country_code= "hsmv_compiled") |>
rename_with(.cols = starts_with("Jul"),
.fn = ~str_replace(.x,pattern = "Jul",replacement = "Jul22")
),
# hsmv_compiled_dist_to_coast,
hsmv_compiled_landcover=hsmv_compiled_landcover |>
mutate(country_code="hsmv_compiled"),
hsmv_compiled_landforms_reclassified=hsmv_compiled_landforms_reclassified |>
mutate(country_code= "hsmv_compiled"),
hsmv_compiled_oxford_access=hsmv_compiled_oxford_access |>
mutate(country_code="hsmv_compiled"),
# hsmv_compiled_ndvi_growing_season_z=hsmv_compiled_ndvi_growing_season_z |>
# mutate(country_code="hsmv_compiled"),
hsmv_compiled_npp=hsmv_compiled_npp |>
mutate(country_code= "hsmv_compiled"),
hsmv_compiled_air_quality=hsmv_compiled_air_quality |>
mutate(country_code="hsmv_compiled")
# hsmv_compiled_local_value_merged
)
),
tar_target(
name = hsmv_compiled_rs_indicators_wide,
command= format_rs_indicators_wide(hsmv_compiled_rs_indicators_long)
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.