models: Valid models in INLA

Description Usage Value Examples

Description

This page describe the models implemented in inla, divided into sections: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper .

Usage

1

Value

Valid sections are: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper

Section ‘latent’.

Valid models in this section are:

Model ‘linear’.

Number of hyperparmeters are 0.

Model ‘iid’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘1001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Gaussian random effects in dim=1’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘indep’

Model ‘mec’.

Number of hyperparmeters are 4.

Hyperparameter ‘theta1’
hyperid =

‘2001’

name =

‘beta’

short.name =

‘b’

prior =

‘gaussian’

param =

‘1 0.001’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘2002’

name =

‘prec.u’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 1e-04’

initial =

‘9.21034037197618’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘2003’

name =

‘mean.x’

short.name =

‘mu.x’

prior =

‘gaussian’

param =

‘0 1e-04’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘2004’

name =

‘prec.x’

short.name =

‘prec.x’

prior =

‘loggamma’

param =

‘1 10000’

initial =

‘-9.21034037197618’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Classical measurement error model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘mec’

Model ‘meb’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘3001’

name =

‘beta’

short.name =

‘b’

prior =

‘gaussian’

param =

‘1 0.001’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘3002’

name =

‘prec.u’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 1e-04’

initial =

‘6.90775527898214’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Berkson measurement error model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘meb’

Model ‘rgeneric’.

Number of hyperparmeters are 0.

Model ‘rw1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘4001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Random walk of order 1’

constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

min.diff =

‘1e-05’

pdf =

‘rw1’

Model ‘rw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘5001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Random walk of order 2’

constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

min.diff =

‘0.001’

pdf =

‘rw2’

Model ‘crw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘6001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Exact solution to the random walk of order 2’

constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘2’

aug.constr =

‘1’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

min.diff =

‘0.001’

pdf =

‘crw2’

Model ‘seasonal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘7001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Seasonal model for time series’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘seasonal’

Model ‘besag’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘8001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Besag area model (CAR-model)’

constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘besag’

Model ‘besag2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘9001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘9002’

name =

‘scaling parameter’

short.name =

‘a’

prior =

‘loggamma’

param =

‘10 10’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The shared Besag model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘1 2’

n.div.by =

‘2’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘besag2’

Model ‘bym’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘10001’

name =

‘log unstructured precision’

short.name =

‘prec.unstruct’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘10002’

name =

‘log spatial precision’

short.name =

‘prec.spatial’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The BYM-model (Besag-York-Mollier model)’

constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘bym’

Model ‘bym2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘11001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘1 0.01’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘11002’

name =

‘logit phi’

short.name =

‘phi’

prior =

‘pc’

param =

‘0.5 0.5’

initial =

‘-3’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘The BYM-model with the PC priors’

constr =

‘TRUE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘bym2’

Model ‘besagproper’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘12001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘12002’

name =

‘log diagonal’

short.name =

‘diag’

prior =

‘loggamma’

param =

‘1 1’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A proper version of the Besag model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘besagproper’

Model ‘besagproper2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘13001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-04’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘13002’

name =

‘logit lambda’

short.name =

‘lambda’

prior =

‘gaussian’

param =

‘0 0.45’

initial =

‘3’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘An alternative proper version of the Besag model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘besagproper2’

Model ‘fgn’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘13101’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘3 0.01’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘13102’

name =

‘logit H’

short.name =

‘H’

prior =

‘pcfgnh’

param =

‘0.9 0.1’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log((2*x-1)/(2*(1-x)))'

from.theta =

'function(x) 0.5 + 0.5*exp(x)/(1+exp(x))'

Properties:
doc =

‘Fractional Gaussian noise model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘5’

aug.constr =

‘1’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

order.default =

‘4’

order.defined =

‘3 4’

pdf =

‘fgn’

Model ‘fgn2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘13111’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘3 0.01’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘13112’

name =

‘logit H’

short.name =

‘H’

prior =

‘pcfgnh’

param =

‘0.9 0.1’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log((2*x-1)/(2*(1-x)))'

from.theta =

'function(x) 0.5 + 0.5*exp(x)/(1+exp(x))'

Properties:
doc =

‘Fractional Gaussian noise model (alt 2)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘4’

aug.constr =

‘1’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

order.default =

‘4’

order.defined =

‘3 4’

pdf =

‘fgn’

Model ‘ar1’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘14001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘14002’

name =

‘logit lag one correlation’

short.name =

‘rho’

prior =

‘normal’

param =

‘0 0.15’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta3’
hyperid =

‘14003’

name =

‘mean’

short.name =

‘mean’

prior =

‘normal’

param =

‘0 1’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘Auto-regressive model of order 1 (AR(1))’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘ar1’

Model ‘ar1c’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘14101’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘1 0.01’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘14102’

name =

‘logit lag one correlation’

short.name =

‘rho’

prior =

‘pc.cor0’

param =

‘0.5 0.5’

initial =

‘2’

fixed =

‘FALSE’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘Auto-regressive model of order 1 w/covariates’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘ar1c’

Model ‘ar’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘15001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘pc.prec’

param =

‘3 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘15002’

name =

‘pacf1’

short.name =

‘pacf1’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.5’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta3’
hyperid =

‘15003’

name =

‘pacf2’

short.name =

‘pacf2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.4’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta4’
hyperid =

‘15004’

name =

‘pacf3’

short.name =

‘pacf3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.3’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta5’
hyperid =

‘15005’

name =

‘pacf4’

short.name =

‘pacf4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.2’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
hyperid =

‘15006’

name =

‘pacf5’

short.name =

‘pacf5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
hyperid =

‘15007’

name =

‘pacf6’

short.name =

‘pacf6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
hyperid =

‘15008’

name =

‘pacf7’

short.name =

‘pacf7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
hyperid =

‘15009’

name =

‘pacf8’

short.name =

‘pacf8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
hyperid =

‘15010’

name =

‘pacf9’

short.name =

‘pacf9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta11’
hyperid =

‘15011’

name =

‘pacf10’

short.name =

‘pacf10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘Auto-regressive model of order p (AR(p))’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘ar’

Model ‘ou’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘16001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘16002’

name =

‘log phi’

short.name =

‘phi’

prior =

‘normal’

param =

‘0 0.2’

initial =

‘-1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Ornstein-Uhlenbeck process’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘ou’

Model ‘intslope’.

Number of hyperparmeters are 13.

Hyperparameter ‘theta1’
hyperid =

‘16101’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart2d’

param =

‘4 1 1 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘16102’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘16103’

name =

‘logit correlation’

short.name =

‘cor’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta4’
hyperid =

‘16104’

name =

‘gamma1’

short.name =

‘g1’

initial =

‘1’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘16105’

name =

‘gamma2’

short.name =

‘g2’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘16106’

name =

‘gamma3’

short.name =

‘g3’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘16107’

name =

‘gamma4’

short.name =

‘g4’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘16108’

name =

‘gamma5’

short.name =

‘g5’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘16109’

name =

‘gamma6’

short.name =

‘g6’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘16110’

name =

‘gamma7’

short.name =

‘g7’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘16111’

name =

‘gamma8’

short.name =

‘g8’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
hyperid =

‘16112’

name =

‘gamma9’

short.name =

‘g9’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
hyperid =

‘16113’

name =

‘gamma10’

short.name =

‘g10’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 36’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘Intecept-slope model with Wishart-prior’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘intslope’

Model ‘generic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘17001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A generic model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic0’

Model ‘generic0’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘18001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A generic model (type 0)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic0’

Model ‘generic1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘19001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘19002’

name =

‘beta’

short.name =

‘beta’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.1’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘A generic model (type 1)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic1’

Model ‘generic2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘20001’

name =

‘log precision cmatrix’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘20002’

name =

‘log precision random’

short.name =

‘prec.random’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.001’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A generic model (type 2)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘generic2’

Model ‘generic3’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘21001’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘21002’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘21003’

name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘21004’

name =

‘log precision4’

short.name =

‘prec4’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
hyperid =

‘21005’

name =

‘log precision5’

short.name =

‘prec5’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
hyperid =

‘21006’

name =

‘log precision6’

short.name =

‘prec6’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta7’
hyperid =

‘21007’

name =

‘log precision7’

short.name =

‘prec7’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta8’
hyperid =

‘21008’

name =

‘log precision8’

short.name =

‘prec8’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta9’
hyperid =

‘21009’

name =

‘log precision9’

short.name =

‘prec9’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta10’
hyperid =

‘21010’

name =

‘log precision10’

short.name =

‘prec10’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta11’
hyperid =

‘21011’

name =

‘log precision common’

short.name =

‘prec.common’

initial =

‘0’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A generic model (type 3)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘generic3’

Model ‘spde’.

Number of hyperparmeters are 4.

Hyperparameter ‘theta1’
hyperid =

‘22001’

name =

‘theta.T’

short.name =

‘T’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘22002’

name =

‘theta.K’

short.name =

‘K’

initial =

‘-2’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘22003’

name =

‘theta.KT’

short.name =

‘KT’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘22004’

name =

‘theta.OC’

short.name =

‘OC’

initial =

‘-20’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘0 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘A SPDE model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘spde’

Model ‘spde2’.

Number of hyperparmeters are 100.

Hyperparameter ‘theta1’
hyperid =

‘23001’

name =

‘theta1’

short.name =

‘t1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘1 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘23002’

name =

‘theta2’

short.name =

‘t2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘23003’

name =

‘theta3’

short.name =

‘t3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘23004’

name =

‘theta4’

short.name =

‘t4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘23005’

name =

‘theta5’

short.name =

‘t5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘23006’

name =

‘theta6’

short.name =

‘t6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘23007’

name =

‘theta7’

short.name =

‘t7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘23008’

name =

‘theta8’

short.name =

‘t8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘23009’

name =

‘theta9’

short.name =

‘t9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘23010’

name =

‘theta10’

short.name =

‘t10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘23011’

name =

‘theta11’

short.name =

‘t11’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
hyperid =

‘23012’

name =

‘theta12’

short.name =

‘t12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
hyperid =

‘23013’

name =

‘theta13’

short.name =

‘t13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta14’
hyperid =

‘23014’

name =

‘theta14’

short.name =

‘t14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta15’
hyperid =

‘23015’

name =

‘theta15’

short.name =

‘t15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta16’
hyperid =

‘23016’

name =

‘theta16’

short.name =

‘t16’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta17’
hyperid =

‘23017’

name =

‘theta17’

short.name =

‘t17’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta18’
hyperid =

‘23018’

name =

‘theta18’

short.name =

‘t18’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta19’
hyperid =

‘23019’

name =

‘theta19’

short.name =

‘t19’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta20’
hyperid =

‘23020’

name =

‘theta20’

short.name =

‘t20’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta21’
hyperid =

‘23021’

name =

‘theta21’

short.name =

‘t21’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta22’
hyperid =

‘23022’

name =

‘theta22’

short.name =

‘t22’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta23’
hyperid =

‘23023’

name =

‘theta23’

short.name =

‘t23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta24’
hyperid =

‘23024’

name =

‘theta24’

short.name =

‘t24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta25’
hyperid =

‘23025’

name =

‘theta25’

short.name =

‘t25’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta26’
hyperid =

‘23026’

name =

‘theta26’

short.name =

‘t26’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta27’
hyperid =

‘23027’

name =

‘theta27’

short.name =

‘t27’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta28’
hyperid =

‘23028’

name =

‘theta28’

short.name =

‘t28’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta29’
hyperid =

‘23029’

name =

‘theta29’

short.name =

‘t29’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta30’
hyperid =

‘23030’

name =

‘theta30’

short.name =

‘t30’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta31’
hyperid =

‘23031’

name =

‘theta31’

short.name =

‘t31’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta32’
hyperid =

‘23032’

name =

‘theta32’

short.name =

‘t32’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta33’
hyperid =

‘23033’

name =

‘theta33’

short.name =

‘t33’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta34’
hyperid =

‘23034’

name =

‘theta34’

short.name =

‘t34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta35’
hyperid =

‘23035’

name =

‘theta35’

short.name =

‘t35’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta36’
hyperid =

‘23036’

name =

‘theta36’

short.name =

‘t36’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta37’
hyperid =

‘23037’

name =

‘theta37’

short.name =

‘t37’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta38’
hyperid =

‘23038’

name =

‘theta38’

short.name =

‘t38’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta39’
hyperid =

‘23039’

name =

‘theta39’

short.name =

‘t39’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta40’
hyperid =

‘23040’

name =

‘theta40’

short.name =

‘t40’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta41’
hyperid =

‘23041’

name =

‘theta41’

short.name =

‘t41’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta42’
hyperid =

‘23042’

name =

‘theta42’

short.name =

‘t42’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta43’
hyperid =

‘23043’

name =

‘theta43’

short.name =

‘t43’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta44’
hyperid =

‘23044’

name =

‘theta44’

short.name =

‘t44’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta45’
hyperid =

‘23045’

name =

‘theta45’

short.name =

‘t45’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta46’
hyperid =

‘23046’

name =

‘theta46’

short.name =

‘t46’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta47’
hyperid =

‘23047’

name =

‘theta47’

short.name =

‘t47’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta48’
hyperid =

‘23048’

name =

‘theta48’

short.name =

‘t48’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta49’
hyperid =

‘23049’

name =

‘theta49’

short.name =

‘t49’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta50’
hyperid =

‘23050’

name =

‘theta50’

short.name =

‘t50’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta51’
hyperid =

‘23051’

name =

‘theta51’

short.name =

‘t51’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta52’
hyperid =

‘23052’

name =

‘theta52’

short.name =

‘t52’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta53’
hyperid =

‘23053’

name =

‘theta53’

short.name =

‘t53’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta54’
hyperid =

‘23054’

name =

‘theta54’

short.name =

‘t54’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta55’
hyperid =

‘23055’

name =

‘theta55’

short.name =

‘t55’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta56’
hyperid =

‘23056’

name =

‘theta56’

short.name =

‘t56’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta57’
hyperid =

‘23057’

name =

‘theta57’

short.name =

‘t57’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta58’
hyperid =

‘23058’

name =

‘theta58’

short.name =

‘t58’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta59’
hyperid =

‘23059’

name =

‘theta59’

short.name =

‘t59’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta60’
hyperid =

‘23060’

name =

‘theta60’

short.name =

‘t60’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta61’
hyperid =

‘23061’

name =

‘theta61’

short.name =

‘t61’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta62’
hyperid =

‘23062’

name =

‘theta62’

short.name =

‘t62’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta63’
hyperid =

‘23063’

name =

‘theta63’

short.name =

‘t63’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta64’
hyperid =

‘23064’

name =

‘theta64’

short.name =

‘t64’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta65’
hyperid =

‘23065’

name =

‘theta65’

short.name =

‘t65’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta66’
hyperid =

‘23066’

name =

‘theta66’

short.name =

‘t66’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta67’
hyperid =

‘23067’

name =

‘theta67’

short.name =

‘t67’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta68’
hyperid =

‘23068’

name =

‘theta68’

short.name =

‘t68’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta69’
hyperid =

‘23069’

name =

‘theta69’

short.name =

‘t69’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta70’
hyperid =

‘23070’

name =

‘theta70’

short.name =

‘t70’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta71’
hyperid =

‘23071’

name =

‘theta71’

short.name =

‘t71’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta72’
hyperid =

‘23072’

name =

‘theta72’

short.name =

‘t72’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta73’
hyperid =

‘23073’

name =

‘theta73’

short.name =

‘t73’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta74’
hyperid =

‘23074’

name =

‘theta74’

short.name =

‘t74’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta75’
hyperid =

‘23075’

name =

‘theta75’

short.name =

‘t75’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta76’
hyperid =

‘23076’

name =

‘theta76’

short.name =

‘t76’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta77’
hyperid =

‘23077’

name =

‘theta77’

short.name =

‘t77’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta78’
hyperid =

‘23078’

name =

‘theta78’

short.name =

‘t78’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta79’
hyperid =

‘23079’

name =

‘theta79’

short.name =

‘t79’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta80’
hyperid =

‘23080’

name =

‘theta80’

short.name =

‘t80’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta81’
hyperid =

‘23081’

name =

‘theta81’

short.name =

‘t81’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta82’
hyperid =

‘23082’

name =

‘theta82’

short.name =

‘t82’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta83’
hyperid =

‘23083’

name =

‘theta83’

short.name =

‘t83’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta84’
hyperid =

‘23084’

name =

‘theta84’

short.name =

‘t84’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta85’
hyperid =

‘23085’

name =

‘theta85’

short.name =

‘t85’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta86’
hyperid =

‘23086’

name =

‘theta86’

short.name =

‘t86’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta87’
hyperid =

‘23087’

name =

‘theta87’

short.name =

‘t87’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta88’
hyperid =

‘23088’

name =

‘theta88’

short.name =

‘t88’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta89’
hyperid =

‘23089’

name =

‘theta89’

short.name =

‘t89’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta90’
hyperid =

‘23090’

name =

‘theta90’

short.name =

‘t90’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta91’
hyperid =

‘23091’

name =

‘theta91’

short.name =

‘t91’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta92’
hyperid =

‘23092’

name =

‘theta92’

short.name =

‘t92’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta93’
hyperid =

‘23093’

name =

‘theta93’

short.name =

‘t93’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta94’
hyperid =

‘23094’

name =

‘theta94’

short.name =

‘t94’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta95’
hyperid =

‘23095’

name =

‘theta95’

short.name =

‘t95’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta96’
hyperid =

‘23096’

name =

‘theta96’

short.name =

‘t96’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta97’
hyperid =

‘23097’

name =

‘theta97’

short.name =

‘t97’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta98’
hyperid =

‘23098’

name =

‘theta98’

short.name =

‘t98’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta99’
hyperid =

‘23099’

name =

‘theta99’

short.name =

‘t99’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta100’
hyperid =

‘23100’

name =

‘theta100’

short.name =

‘t100’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘A SPDE2 model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘spde2’

Model ‘spde3’.

Number of hyperparmeters are 100.

Hyperparameter ‘theta1’
hyperid =

‘24001’

name =

‘theta1’

short.name =

‘t1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘1 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘24002’

name =

‘theta2’

short.name =

‘t2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘24003’

name =

‘theta3’

short.name =

‘t3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘24004’

name =

‘theta4’

short.name =

‘t4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘24005’

name =

‘theta5’

short.name =

‘t5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘24006’

name =

‘theta6’

short.name =

‘t6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘24007’

name =

‘theta7’

short.name =

‘t7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘24008’

name =

‘theta8’

short.name =

‘t8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘24009’

name =

‘theta9’

short.name =

‘t9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘24010’

name =

‘theta10’

short.name =

‘t10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘24011’

name =

‘theta11’

short.name =

‘t11’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
hyperid =

‘24012’

name =

‘theta12’

short.name =

‘t12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
hyperid =

‘24013’

name =

‘theta13’

short.name =

‘t13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta14’
hyperid =

‘24014’

name =

‘theta14’

short.name =

‘t14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta15’
hyperid =

‘24015’

name =

‘theta15’

short.name =

‘t15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta16’
hyperid =

‘24016’

name =

‘theta16’

short.name =

‘t16’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta17’
hyperid =

‘24017’

name =

‘theta17’

short.name =

‘t17’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta18’
hyperid =

‘24018’

name =

‘theta18’

short.name =

‘t18’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta19’
hyperid =

‘24019’

name =

‘theta19’

short.name =

‘t19’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta20’
hyperid =

‘24020’

name =

‘theta20’

short.name =

‘t20’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta21’
hyperid =

‘24021’

name =

‘theta21’

short.name =

‘t21’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta22’
hyperid =

‘24022’

name =

‘theta22’

short.name =

‘t22’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta23’
hyperid =

‘24023’

name =

‘theta23’

short.name =

‘t23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta24’
hyperid =

‘24024’

name =

‘theta24’

short.name =

‘t24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta25’
hyperid =

‘24025’

name =

‘theta25’

short.name =

‘t25’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta26’
hyperid =

‘24026’

name =

‘theta26’

short.name =

‘t26’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta27’
hyperid =

‘24027’

name =

‘theta27’

short.name =

‘t27’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta28’
hyperid =

‘24028’

name =

‘theta28’

short.name =

‘t28’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta29’
hyperid =

‘24029’

name =

‘theta29’

short.name =

‘t29’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta30’
hyperid =

‘24030’

name =

‘theta30’

short.name =

‘t30’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta31’
hyperid =

‘24031’

name =

‘theta31’

short.name =

‘t31’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta32’
hyperid =

‘24032’

name =

‘theta32’

short.name =

‘t32’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta33’
hyperid =

‘24033’

name =

‘theta33’

short.name =

‘t33’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta34’
hyperid =

‘24034’

name =

‘theta34’

short.name =

‘t34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta35’
hyperid =

‘24035’

name =

‘theta35’

short.name =

‘t35’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta36’
hyperid =

‘24036’

name =

‘theta36’

short.name =

‘t36’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta37’
hyperid =

‘24037’

name =

‘theta37’

short.name =

‘t37’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta38’
hyperid =

‘24038’

name =

‘theta38’

short.name =

‘t38’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta39’
hyperid =

‘24039’

name =

‘theta39’

short.name =

‘t39’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta40’
hyperid =

‘24040’

name =

‘theta40’

short.name =

‘t40’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta41’
hyperid =

‘24041’

name =

‘theta41’

short.name =

‘t41’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta42’
hyperid =

‘24042’

name =

‘theta42’

short.name =

‘t42’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta43’
hyperid =

‘24043’

name =

‘theta43’

short.name =

‘t43’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta44’
hyperid =

‘24044’

name =

‘theta44’

short.name =

‘t44’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta45’
hyperid =

‘24045’

name =

‘theta45’

short.name =

‘t45’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta46’
hyperid =

‘24046’

name =

‘theta46’

short.name =

‘t46’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta47’
hyperid =

‘24047’

name =

‘theta47’

short.name =

‘t47’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta48’
hyperid =

‘24048’

name =

‘theta48’

short.name =

‘t48’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta49’
hyperid =

‘24049’

name =

‘theta49’

short.name =

‘t49’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta50’
hyperid =

‘24050’

name =

‘theta50’

short.name =

‘t50’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta51’
hyperid =

‘24051’

name =

‘theta51’

short.name =

‘t51’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta52’
hyperid =

‘24052’

name =

‘theta52’

short.name =

‘t52’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta53’
hyperid =

‘24053’

name =

‘theta53’

short.name =

‘t53’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta54’
hyperid =

‘24054’

name =

‘theta54’

short.name =

‘t54’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta55’
hyperid =

‘24055’

name =

‘theta55’

short.name =

‘t55’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta56’
hyperid =

‘24056’

name =

‘theta56’

short.name =

‘t56’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta57’
hyperid =

‘24057’

name =

‘theta57’

short.name =

‘t57’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta58’
hyperid =

‘24058’

name =

‘theta58’

short.name =

‘t58’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta59’
hyperid =

‘24059’

name =

‘theta59’

short.name =

‘t59’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta60’
hyperid =

‘24060’

name =

‘theta60’

short.name =

‘t60’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta61’
hyperid =

‘24061’

name =

‘theta61’

short.name =

‘t61’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta62’
hyperid =

‘24062’

name =

‘theta62’

short.name =

‘t62’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta63’
hyperid =

‘24063’

name =

‘theta63’

short.name =

‘t63’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta64’
hyperid =

‘24064’

name =

‘theta64’

short.name =

‘t64’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta65’
hyperid =

‘24065’

name =

‘theta65’

short.name =

‘t65’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta66’
hyperid =

‘24066’

name =

‘theta66’

short.name =

‘t66’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta67’
hyperid =

‘24067’

name =

‘theta67’

short.name =

‘t67’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta68’
hyperid =

‘24068’

name =

‘theta68’

short.name =

‘t68’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta69’
hyperid =

‘24069’

name =

‘theta69’

short.name =

‘t69’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta70’
hyperid =

‘24070’

name =

‘theta70’

short.name =

‘t70’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta71’
hyperid =

‘24071’

name =

‘theta71’

short.name =

‘t71’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta72’
hyperid =

‘24072’

name =

‘theta72’

short.name =

‘t72’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta73’
hyperid =

‘24073’

name =

‘theta73’

short.name =

‘t73’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta74’
hyperid =

‘24074’

name =

‘theta74’

short.name =

‘t74’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta75’
hyperid =

‘24075’

name =

‘theta75’

short.name =

‘t75’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta76’
hyperid =

‘24076’

name =

‘theta76’

short.name =

‘t76’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta77’
hyperid =

‘24077’

name =

‘theta77’

short.name =

‘t77’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta78’
hyperid =

‘24078’

name =

‘theta78’

short.name =

‘t78’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta79’
hyperid =

‘24079’

name =

‘theta79’

short.name =

‘t79’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta80’
hyperid =

‘24080’

name =

‘theta80’

short.name =

‘t80’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta81’
hyperid =

‘24081’

name =

‘theta81’

short.name =

‘t81’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta82’
hyperid =

‘24082’

name =

‘theta82’

short.name =

‘t82’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta83’
hyperid =

‘24083’

name =

‘theta83’

short.name =

‘t83’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta84’
hyperid =

‘24084’

name =

‘theta84’

short.name =

‘t84’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta85’
hyperid =

‘24085’

name =

‘theta85’

short.name =

‘t85’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta86’
hyperid =

‘24086’

name =

‘theta86’

short.name =

‘t86’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta87’
hyperid =

‘24087’

name =

‘theta87’

short.name =

‘t87’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta88’
hyperid =

‘24088’

name =

‘theta88’

short.name =

‘t88’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta89’
hyperid =

‘24089’

name =

‘theta89’

short.name =

‘t89’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta90’
hyperid =

‘24090’

name =

‘theta90’

short.name =

‘t90’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta91’
hyperid =

‘24091’

name =

‘theta91’

short.name =

‘t91’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta92’
hyperid =

‘24092’

name =

‘theta92’

short.name =

‘t92’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta93’
hyperid =

‘24093’

name =

‘theta93’

short.name =

‘t93’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta94’
hyperid =

‘24094’

name =

‘theta94’

short.name =

‘t94’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta95’
hyperid =

‘24095’

name =

‘theta95’

short.name =

‘t95’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta96’
hyperid =

‘24096’

name =

‘theta96’

short.name =

‘t96’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta97’
hyperid =

‘24097’

name =

‘theta97’

short.name =

‘t97’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta98’
hyperid =

‘24098’

name =

‘theta98’

short.name =

‘t98’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta99’
hyperid =

‘24099’

name =

‘theta99’

short.name =

‘t99’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta100’
hyperid =

‘24100’

name =

‘theta100’

short.name =

‘t100’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘A SPDE3 model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘spde3’

Model ‘iid1d’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘25001’

name =

‘precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart1d’

param =

‘2 1e-04’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Gaussian random effect in dim=1 with Wishart prior’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid2d’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘26001’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart2d’

param =

‘4 1 1 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘26002’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘26003’

name =

‘logit correlation’

short.name =

‘cor’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘Gaussian random effect in dim=2 with Wishart prior’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2’

n.div.by =

‘2’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid3d’.

Number of hyperparmeters are 6.

Hyperparameter ‘theta1’
hyperid =

‘27001’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart3d’

param =

‘7 1 1 1 0 0 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘27002’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘27003’

name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘27004’

name =

‘logit correlation12’

short.name =

‘cor12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta5’
hyperid =

‘27005’

name =

‘logit correlation13’

short.name =

‘cor13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
hyperid =

‘27006’

name =

‘logit correlation23’

short.name =

‘cor23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘Gaussian random effect in dim=3 with Wishart prior’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2 3’

n.div.by =

‘3’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid4d’.

Number of hyperparmeters are 10.

Hyperparameter ‘theta1’
hyperid =

‘28001’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart4d’

param =

‘11 1 1 1 1 0 0 0 0 0 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘28002’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘28003’

name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘28004’

name =

‘log precision4’

short.name =

‘prec4’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
hyperid =

‘28005’

name =

‘logit correlation12’

short.name =

‘cor12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
hyperid =

‘28006’

name =

‘logit correlation13’

short.name =

‘cor13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
hyperid =

‘28007’

name =

‘logit correlation14’

short.name =

‘cor14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
hyperid =

‘28008’

name =

‘logit correlation23’

short.name =

‘cor23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
hyperid =

‘28009’

name =

‘logit correlation24’

short.name =

‘cor24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
hyperid =

‘28010’

name =

‘logit correlation34’

short.name =

‘cor34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘Gaussian random effect in dim=4 with Wishart prior’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2 3 4’

n.div.by =

‘4’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘iid5d’.

Number of hyperparmeters are 15.

Hyperparameter ‘theta1’
hyperid =

‘29001’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘wishart5d’

param =

‘16 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘29002’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘29003’

name =

‘log precision3’

short.name =

‘prec3’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘29004’

name =

‘log precision4’

short.name =

‘prec4’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
hyperid =

‘29005’

name =

‘log precision5’

short.name =

‘prec5’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
hyperid =

‘29006’

name =

‘logit correlation12’

short.name =

‘cor12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
hyperid =

‘29007’

name =

‘logit correlation13’

short.name =

‘cor13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
hyperid =

‘29008’

name =

‘logit correlation14’

short.name =

‘cor14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
hyperid =

‘29009’

name =

‘logit correlation15’

short.name =

‘cor15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
hyperid =

‘29010’

name =

‘logit correlation23’

short.name =

‘cor23’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta11’
hyperid =

‘29011’

name =

‘logit correlation24’

short.name =

‘cor24’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta12’
hyperid =

‘29012’

name =

‘logit correlation25’

short.name =

‘cor25’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta13’
hyperid =

‘29013’

name =

‘logit correlation34’

short.name =

‘cor34’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta14’
hyperid =

‘29014’

name =

‘logit correlation35’

short.name =

‘cor35’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta15’
hyperid =

‘29015’

name =

‘logit correlation45’

short.name =

‘cor45’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘Gaussian random effect in dim=5 with Wishart prior’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘TRUE’

aug.factor =

‘1’

aug.constr =

‘1 2 3 4 5’

n.div.by =

‘5’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘2diid’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘30001’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘30002’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘30003’

name =

‘correlation’

short.name =

‘cor’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.15’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘(This model is obsolute)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘1 2’

n.div.by =

‘2’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘iid123d’

Model ‘z’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘31001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The z-model in a classical mixed model formulation’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘z’

status =

‘experimental’

Model ‘rw2d’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘32001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Thin-plate spline model’

constr =

‘TRUE’

nrow.ncol =

‘TRUE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

pdf =

‘rw2d’

Model ‘rw2diid’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘33001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘1 0.01’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘33002’

name =

‘logit phi’

short.name =

‘phi’

prior =

‘pc’

param =

‘0.5 0.5’

initial =

‘3’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Thin-plate spline with iid noise’

constr =

‘TRUE’

nrow.ncol =

‘TRUE’

augmented =

‘TRUE’

aug.factor =

‘2’

aug.constr =

‘2’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘rw2diid’

Model ‘slm’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘34001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘34002’

name =

‘rho’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 10’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) 1/(1+exp(-x))'

Properties:
doc =

‘Spatial lag model’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

pdf =

‘slm’

status =

‘experimental’

Model ‘matern2d’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘35001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘35002’

name =

‘log range’

short.name =

‘range’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Matern covariance function on a regular grid’

constr =

‘FALSE’

nrow.ncol =

‘TRUE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘TRUE’

pdf =

‘matern2d’

Model ‘dmatern’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘35101’

name =

‘log precision’

short.name =

‘prec’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘pc.prec’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘35102’

name =

‘log range’

short.name =

‘range’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.range’

param =

‘1 0.5’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘35103’

name =

‘log nu’

short.name =

‘nu’

initial =

‘-0.693147180559945’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘0.5 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Dense Matern field’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘TRUE’

set.default.values =

‘TRUE’

status =

‘experimental’

pdf =

‘dmatern’

Model ‘copy’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘36001’

name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (log( - (low - x)/(high -x))) else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low)) else {} stop("Condition not yet implemented") '

from.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (low + exp(x)/(1+exp(x)) * (high - low)) else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x)) else {} stop("Condition not yet implemented") '

Properties:
doc =

‘Create a copy of a model component’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘NA’

Model ‘clinear’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘37001’

name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} stopifnot(low < high) return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (log( - (low - x)/(high -x))) else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low)) else {} stop("Condition not yet implemented") '

from.theta =

'function(x, REPLACE.ME.low, REPLACE.ME.high) {} if (all(is.infinite(c(low, high))) || low == high) {} stopifnot(low < high) return (x) else if (all(is.finite(c(low, high)))) {} stopifnot(low < high) return (low + exp(x)/(1+exp(x)) * (high - low)) else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x)) else {} stop("Condition not yet implemented") '

Properties:
doc =

‘Constrained linear effect’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘clinear’

Model ‘sigm’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘38001’

name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘38002’

name =

‘loghalflife’

short.name =

‘halflife’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘3 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘38003’

name =

‘logshape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘10 10’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Sigmoidal effect of a covariate’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘sigm’

Model ‘revsigm’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘39001’

name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘1 10’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘39002’

name =

‘loghalflife’

short.name =

‘halflife’

initial =

‘3’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘3 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘39003’

name =

‘logshape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘10 10’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Reverse sigmoidal effect of a covariate’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘sigm’

Model ‘log1exp’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘39011’

name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘39012’

name =

‘alpha’

short.name =

‘a’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘39013’

name =

‘gamma’

short.name =

‘g’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘A nonlinear model of a covariate’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘log1exp’

Model ‘logdist’.

Number of hyperparmeters are 3.

Hyperparameter ‘theta1’
hyperid =

‘39021’

name =

‘beta’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘39022’

name =

‘alpha1’

short.name =

‘a1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘0.1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘39023’

name =

‘alpha2’

short.name =

‘a2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘0.1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A nonlinear model of a covariate’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

status =

‘experimental’

pdf =

‘logdist’

Section ‘group’.

Valid models in this section are:

Model ‘exchangeable’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘40001’

name =

‘logit correlation’

short.name =

‘rho’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.2’

to.theta =

'function(x, REPLACE.ME.ngroup) log((1+x*(ngroup-1))/(1-x))'

from.theta =

'function(x, REPLACE.ME.ngroup) (exp(x)-1)/(exp(x) + ngroup -1)'

Properties:
doc =

‘Exchangeable correlations’

Model ‘exchangeablepos’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘40101’

name =

‘logit correlation’

short.name =

‘rho’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.5’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Exchangeable positive correlations’

Model ‘ar1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘41001’

name =

‘logit correlation’

short.name =

‘rho’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.15’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘AR(1) correlations’

Model ‘ar’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘42001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘TRUE’

prior =

‘pc.prec’

param =

‘3 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘42002’

name =

‘pacf1’

short.name =

‘pacf1’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.5’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta3’
hyperid =

‘42003’

name =

‘pacf2’

short.name =

‘pacf2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.4’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta4’
hyperid =

‘42004’

name =

‘pacf3’

short.name =

‘pacf3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.3’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta5’
hyperid =

‘42005’

name =

‘pacf4’

short.name =

‘pacf4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.2’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta6’
hyperid =

‘42006’

name =

‘pacf5’

short.name =

‘pacf5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta7’
hyperid =

‘42007’

name =

‘pacf6’

short.name =

‘pacf6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta8’
hyperid =

‘42008’

name =

‘pacf7’

short.name =

‘pacf7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta9’
hyperid =

‘42009’

name =

‘pacf8’

short.name =

‘pacf8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta10’
hyperid =

‘42010’

name =

‘pacf9’

short.name =

‘pacf9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Hyperparameter ‘theta11’
hyperid =

‘42011’

name =

‘pacf10’

short.name =

‘pacf10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.cor0’

param =

‘0.5 0.1’

to.theta =

'function(x) log((1+x)/(1-x))'

from.theta =

'function(x) 2*exp(x)/(1+exp(x))-1'

Properties:
doc =

‘AR(p) correlations’

Model ‘rw1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘43001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Random walk of order 1’

Model ‘rw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘44001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Random walk of order 2’

Model ‘besag’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘45001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Besag model’

Model ‘iid’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘46001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘loggamma’

param =

‘1 5e-05’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Independent model’

Section ‘mix’.

Valid models in this section are:

Model ‘gaussian’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘47001’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.prec’

param =

‘1 0.01’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Gaussian mixture’

Model ‘loggamma’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘47101’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.mgamma’

param =

‘4.8’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘LogGamma mixture’

Model ‘mloggamma’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘47201’

name =

‘log precision’

short.name =

‘prec’

prior =

‘pc.mgamma’

param =

‘4.8’

initial =

‘4’

fixed =

‘FALSE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Minus-LogGamma mixture’

Section ‘link’.

Valid models in this section are:

Model ‘default’.

Number of hyperparmeters are 0.

Model ‘cloglog’.

Number of hyperparmeters are 0.

Model ‘loglog’.

Number of hyperparmeters are 0.

Model ‘identity’.

Number of hyperparmeters are 0.

Model ‘inverse’.

Number of hyperparmeters are 0.

Model ‘log’.

Number of hyperparmeters are 0.

Model ‘neglog’.

Number of hyperparmeters are 0.

Model ‘logit’.

Number of hyperparmeters are 0.

Model ‘probit’.

Number of hyperparmeters are 0.

Model ‘cauchit’.

Number of hyperparmeters are 0.

Model ‘tan’.

Number of hyperparmeters are 0.

Model ‘quantile’.

Number of hyperparmeters are 0.

Model ‘pquantile’.

Number of hyperparmeters are 0.

Model ‘sslogit’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘48001’

name =

‘sensitivity’

short.name =

‘sens’

prior =

‘logitbeta’

param =

‘10 5’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
hyperid =

‘48002’

name =

‘specificity’

short.name =

‘spec’

prior =

‘logitbeta’

param =

‘10 5’

initial =

‘1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Logit link with sensitivity and specificity’

pdf =

‘NA’

Model ‘logoffset’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘49001’

name =

‘beta’

short.name =

‘b’

prior =

‘normal’

param =

‘0 100’

initial =

‘0’

fixed =

‘TRUE’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Log-link with an offset’

pdf =

‘logoffset’

Model ‘logitoffset’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘49011’

name =

‘prob’

short.name =

‘p’

prior =

‘normal’

param =

‘-1 100’

initial =

‘-1’

fixed =

‘FALSE’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Logit-link with an offset’

status =

‘experimental’

pdf =

‘logitoffset’

Model ‘robit’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘49021’

name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘1.6094379124341’

fixed =

‘TRUE’

prior =

‘pc.dof’

param =

‘50 0.5’

to.theta =

'function(x) log(x-2)'

from.theta =

'function(x) 2+exp(x)'

Properties:
doc =

‘Robit link’

status =

‘experimental’

pdf =

‘robit’

Model ‘test1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘50001’

name =

‘beta’

short.name =

‘b’

prior =

‘normal’

param =

‘0 100’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘A test1-link function (experimental)’

pdf =

‘NA’

Model ‘special1’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘51001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘51002’

name =

‘beta1’

short.name =

‘beta1’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘mvnorm’

param =

‘0 100’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘51003’

name =

‘beta2’

short.name =

‘beta2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘51004’

name =

‘beta3’

short.name =

‘beta3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘51005’

name =

‘beta4’

short.name =

‘beta4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘51006’

name =

‘beta5’

short.name =

‘beta5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘51007’

name =

‘beta6’

short.name =

‘beta6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘51008’

name =

‘beta7’

short.name =

‘beta7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘51009’

name =

‘beta8’

short.name =

‘beta8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘51010’

name =

‘beta9’

short.name =

‘beta9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘51011’

name =

‘beta10’

short.name =

‘beta10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘A special1-link function (experimental)’

pdf =

‘NA’

Model ‘special2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘52001’

name =

‘beta’

short.name =

‘b’

prior =

‘normal’

param =

‘0 10’

initial =

‘0’

fixed =

‘FALSE’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘A special2-link function (experimental)’

pdf =

‘NA’

Section ‘predictor’.

Valid models in this section are:

Model ‘predictor’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘53001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘12’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 1e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘(not used)’

Section ‘hazard’.

Valid models in this section are:

Model ‘rw1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘54001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A random walk of order 1 for the log-hazard’

Model ‘rw2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘55001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A random walk of order 2 for the log-hazard’

Section ‘likelihood’.

Valid models in this section are:

Model ‘poisson’.

Number of hyperparmeters are 0.

Model ‘contpoisson’.

Number of hyperparmeters are 0.

Model ‘qcontpoisson’.

Number of hyperparmeters are 0.

Model ‘cenpoisson’.

Number of hyperparmeters are 0.

Model ‘gpoisson’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘56001’

name =

‘overdispersion’

short.name =

‘phi’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘56002’

name =

‘p’

short.name =

‘p’

initial =

‘1’

fixed =

‘TRUE’

prior =

‘normal’

param =

‘1 100’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘The generalized Poisson likelihood’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default log logoffset’

pdf =

‘gpoisson’

status =

‘experimental’

Model ‘binomial’.

Number of hyperparmeters are 0.

Model ‘pom’.

Number of hyperparmeters are 10.

Hyperparameter ‘theta1’
hyperid =

‘57101’

name =

‘theta1’

short.name =

‘theta1’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘dirichlet’

param =

‘3’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘57102’

name =

‘theta2’

short.name =

‘theta2’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘57103’

name =

‘theta3’

short.name =

‘theta3’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘57104’

name =

‘theta4’

short.name =

‘theta4’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
hyperid =

‘57105’

name =

‘theta5’

short.name =

‘theta5’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
hyperid =

‘57106’

name =

‘theta6’

short.name =

‘theta6’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta7’
hyperid =

‘57107’

name =

‘theta7’

short.name =

‘theta7’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta8’
hyperid =

‘57108’

name =

‘theta8’

short.name =

‘theta8’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta9’
hyperid =

‘57109’

name =

‘theta9’

short.name =

‘theta9’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta10’
hyperid =

‘57110’

name =

‘theta10’

short.name =

‘theta10’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Likelihood for the proportional odds model’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default identity’

pdf =

‘pom’

Model ‘gev2’.

Number of hyperparmeters are 12.

Hyperparameter ‘theta1’
hyperid =

‘57201’

name =

‘spread’

short.name =

‘sd’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 3’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘57202’

name =

‘tail’

short.name =

‘tail’

initial =

‘-4’

fixed =

‘FALSE’

prior =

‘pc.gevtail’

param =

‘7 0 0.5’

to.theta =

'function(x, interval = c(REPLACE.ME.low, REPLACE.ME.high)) log(-(interval[1] - x)/(interval[2] - x))'

from.theta =

'function(x, interval = c(REPLACE.ME.low, REPLACE.ME.high)) interval[1] + (interval[2]-interval[1]) * exp(x)/(1.0 + exp(x))'

Hyperparameter ‘theta3’
hyperid =

‘57203’

name =

‘beta1’

short.name =

‘beta1’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘57204’

name =

‘beta2’

short.name =

‘beta2’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘57205’

name =

‘beta3’

short.name =

‘beta3’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘57206’

name =

‘beta4’

short.name =

‘beta4’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘57207’

name =

‘beta5’

short.name =

‘beta5’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘57208’

name =

‘beta6’

short.name =

‘beta6’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘57209’

name =

‘beta7’

short.name =

‘beta7’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘57210’

name =

‘beta8’

short.name =

‘beta8’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘57211’

name =

‘beta9’

short.name =

‘beta9’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
hyperid =

‘57212’

name =

‘beta10’

short.name =

‘beta’

initial =

‘NA’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 300’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘The Generalized Extreme Value likelihood (2nd variant)’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘gev2’

Model ‘gamma’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘58001’

name =

‘precision parameter’

short.name =

‘prec’

initial =

‘4.60517018598809’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Gamma likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log quantile’

pdf =

‘gamma’

Model ‘gammasurv’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘58101’

name =

‘precision parameter’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Gamma likelihood (survival)’

survival =

‘TRUE’

discrete =

‘FALSE’

status =

‘experimental’

link =

‘default log quantile’

pdf =

‘gammasurv’

Model ‘gammacount’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘59001’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.gammacount’

param =

‘3’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A Gamma generalisation of the Poisson likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

status =

‘experimental’

pdf =

‘gammacount’

Model ‘qkumar’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘60001’

name =

‘precision parameter’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.001’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A quantile version of the Kumar likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit’

pdf =

‘qkumar’

Model ‘qloglogistic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘60011’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A quantile loglogistic likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log neglog’

pdf =

‘qloglogistic’

Model ‘qloglogisticsurv’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘60021’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A quantile loglogistic likelihood (survival)’

survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log neglog’

pdf =

‘qloglogistic’

Model ‘beta’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘61001’

name =

‘precision parameter’

short.name =

‘phi’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Beta likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog’

pdf =

‘beta’

Model ‘betabinomial’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘62001’

name =

‘overdispersion’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.4’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘The Beta-Binomial likelihood’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘betabinomial’

Model ‘cbinomial’.

Number of hyperparmeters are 0.

Model ‘nbinomial’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘63001’

name =

‘size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The negBinomial likelihood’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default log logoffset quantile’

pdf =

‘nbinomial’

Model ‘nbinomial2’.

Number of hyperparmeters are 0.

Model ‘simplex’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘64001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The simplex likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog’

pdf =

‘simplex’

Model ‘gaussian’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘65001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘65002’

name =

‘log precision offset’

short.name =

‘precoffset’

initial =

‘72.0873067782343’

fixed =

‘TRUE’

prior =

‘none’

param =

''

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Gaussian likelihoood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity logit cauchit log logoffset’

pdf =

‘gaussian’

Model ‘circularnormal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘67001’

name =

‘log precision parameter’

short.name =

‘prec’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.01’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The circular Gaussian likelihoood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default tan’

pdf =

‘circular-normal’

status =

‘experimental’

Model ‘wrappedcauchy’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘68001’

name =

‘log precision parameter’

short.name =

‘prec’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.005’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘The wrapped Cauchy likelihoood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default tan’

pdf =

‘wrapped-cauchy’

status =

‘disabled’

Model ‘iidgamma’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘69001’

name =

‘logshape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘100 100’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘69002’

name =

‘lograte’

short.name =

‘rate’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘100 100’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘(experimental)’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘iidgamma’

status =

‘experimental’

Model ‘iidlogitbeta’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘70001’

name =

‘log.a’

short.name =

‘a’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘70002’

name =

‘log.b’

short.name =

‘b’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘(experimental)’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit’

pdf =

‘iidlogitbeta’

status =

‘experimental’

Model ‘loggammafrailty’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘71001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘(experimental)’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘loggammafrailty’

status =

‘experimental’

Model ‘logistic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘72001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Logistic likelihoood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘logistic’

Model ‘skewnormal’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘73001’

name =

‘log inverse scale’

short.name =

‘iscale’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘73002’

name =

‘logit skewness’

short.name =

‘skew’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))'

from.theta =

'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)'

Properties:
doc =

‘The Skew-Normal likelihoood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘sn’

Model ‘sn’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘74001’

name =

‘log inverse scale’

short.name =

‘iscale’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘74002’

name =

‘logit skewness’

short.name =

‘skew’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))'

from.theta =

'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)'

Properties:
doc =

‘The Skew-Normal likelihoood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘sn’

Model ‘sn2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘75001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘75002’

name =

‘logit skewness’

short.name =

‘skew’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))'

from.theta =

'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)'

Properties:
doc =

‘The Skew-Normal likelihoood (alt param)’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

status =

‘experimental’

pdf =

‘sn2’

Model ‘gev’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘76001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘76002’

name =

‘tail parameter’

short.name =

‘tail’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 25’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘The Generalized Extreme Value likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

status =

‘experimental’

pdf =

‘gev’

Model ‘lognormal’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘77101’

name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The log-Normal likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘lognormal’

Model ‘lognormalsurv’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘78001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The log-Normal likelihood (survival)’

survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘lognormal’

Model ‘exponential’.

Number of hyperparmeters are 0.

Model ‘exponentialsurv’.

Number of hyperparmeters are 0.

Model ‘coxph’.

Number of hyperparmeters are 0.

Model ‘weibull’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘79001’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘0.1’

fixed =

‘FALSE’

prior =

‘pc.alphaw’

param =

‘5’

to.theta =

'function(x, sc = 0.1) log(x)/sc'

from.theta =

'function(x, sc = 0.1) exp(sc*x)'

Properties:
doc =

‘The Weibull likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log neglog quantile’

pdf =

‘weibull’

Model ‘weibullsurv’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘79101’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘0.1’

fixed =

‘FALSE’

prior =

‘pc.alphaw’

param =

‘5’

to.theta =

'function(x, sc = 0.1) log(x)/sc'

from.theta =

'function(x, sc = 0.1) exp(sc*x)'

Properties:
doc =

‘The Weibull likelihood (survival)’

survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log neglog quantile’

pdf =

‘weibull’

Model ‘loglogistic’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘80001’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The loglogistic likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log neglog’

pdf =

‘loglogistic’

Model ‘loglogisticsurv’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘80011’

name =

‘log alpha’

short.name =

‘alpha’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘25 25’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The loglogistic likelihood (survival)’

survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log neglog’

pdf =

‘loglogistic’

Model ‘weibullcure’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘81001’

name =

‘log alpha’

short.name =

‘a’

initial =

‘0.1’

fixed =

‘FALSE’

prior =

‘pc.alphaw’

param =

‘5’

to.theta =

'function(x, sc = 0.1) log(x)/sc'

from.theta =

'function(x, sc = 0.1) exp(sc*x)'

Hyperparameter ‘theta2’
hyperid =

‘81002’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘The Weibull-cure likelihood (survival)’

survival =

‘TRUE’

discrete =

‘FALSE’

link =

‘default log neglog’

pdf =

‘weibullcure’

Model ‘stochvol’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘82001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘500’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 0.005’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘The Gaussian stochvol likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘stochvolgaussian’

Model ‘stochvolt’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘83001’

name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘pc.dof’

param =

‘15 0.5’

to.theta =

'function(x) log(x-2)'

from.theta =

'function(x) 2+exp(x)'

Properties:
doc =

‘The Student-t stochvol likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘stochvolt’

Model ‘stochvolnig’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘84001’

name =

‘skewness’

short.name =

‘skew’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 10’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘84002’

name =

‘shape’

short.name =

‘shape’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 0.5’

to.theta =

'function(x) log(x-1)'

from.theta =

'function(x) 1+exp(x)'

Properties:
doc =

‘The Normal inverse Gaussian stochvol likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘stochvolnig’

Model ‘zeroinflatedpoisson0’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘85001’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero-inflated Poisson, type 0’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatedpoisson1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘86001’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero-inflated Poisson, type 1’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatedpoisson2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘87001’

name =

‘log alpha’

short.name =

‘a’

initial =

‘0.693147180559945’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0.693147180559945 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero-inflated Poisson, type 2’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbetabinomial0’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘88001’

name =

‘overdispersion’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.4’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
hyperid =

‘88002’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero-inflated Beta-Binomial, type 0’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbetabinomial1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘89001’

name =

‘overdispersion’

short.name =

‘rho’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 0.4’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
hyperid =

‘89002’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero-inflated Beta-Binomial, type 1’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbinomial0’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘90001’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero-inflated Binomial, type 0’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbinomial1’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘91001’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero-inflated Binomial, type 1’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbinomial2’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘92001’

name =

‘alpha’

short.name =

‘alpha’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero-inflated Binomial, type 2’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroninflatedbinomial2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘93001’

name =

‘alpha1’

short.name =

‘alpha1’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘93002’

name =

‘alpha2’

short.name =

‘alpha2’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero and N inflated binomial, type 2’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘NA’

Model ‘zeroninflatedbinomial3’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘93101’

name =

‘alpha0’

short.name =

‘alpha0’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘93102’

name =

‘alphaN’

short.name =

‘alphaN’

initial =

‘1’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero and N inflated binomial, type 3’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroinflatedbetabinomial2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘94001’

name =

‘log alpha’

short.name =

‘a’

initial =

‘0.693147180559945’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0.693147180559945 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘94002’

name =

‘beta’

short.name =

‘b’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘0 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero inflated Beta-Binomial, type 2’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default logit cauchit probit cloglog loglog robit’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial0’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘95001’

name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘95002’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero inflated negBinomial, type 0’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial1’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘96001’

name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘96002’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero inflated negBinomial, type 1’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial1strata2’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘97001’

name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘97002’

name =

‘logit probability 1’

short.name =

‘prob1’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta3’
hyperid =

‘97003’

name =

‘logit probability 2’

short.name =

‘prob2’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta4’
hyperid =

‘97004’

name =

‘logit probability 3’

short.name =

‘prob3’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta5’
hyperid =

‘97005’

name =

‘logit probability 4’

short.name =

‘prob4’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta6’
hyperid =

‘97006’

name =

‘logit probability 5’

short.name =

‘prob5’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta7’
hyperid =

‘97007’

name =

‘logit probability 6’

short.name =

‘prob6’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta8’
hyperid =

‘97008’

name =

‘logit probability 7’

short.name =

‘prob7’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta9’
hyperid =

‘97009’

name =

‘logit probability 8’

short.name =

‘prob8’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta10’
hyperid =

‘97010’

name =

‘logit probability 9’

short.name =

‘prob9’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta11’
hyperid =

‘97011’

name =

‘logit probability 10’

short.name =

‘prob10’

initial =

‘-1’

fixed =

‘TRUE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Properties:
doc =

‘Zero inflated negBinomial, type 1, strata 2’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial1strata3’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘98001’

name =

‘logit probability’

short.name =

‘prob’

initial =

‘-1’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘-1 0.2’

to.theta =

'function(x) log(x/(1-x))'

from.theta =

'function(x) exp(x)/(1+exp(x))'

Hyperparameter ‘theta2’
hyperid =

‘98002’

name =

‘log size 1’

short.name =

‘size1’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘98003’

name =

‘log size 2’

short.name =

‘size2’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘98004’

name =

‘log size 3’

short.name =

‘size3’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
hyperid =

‘98005’

name =

‘log size 4’

short.name =

‘size4’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
hyperid =

‘98006’

name =

‘log size 5’

short.name =

‘size5’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta7’
hyperid =

‘98007’

name =

‘log size 6’

short.name =

‘size6’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta8’
hyperid =

‘98008’

name =

‘log size 7’

short.name =

‘size7’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta9’
hyperid =

‘98009’

name =

‘log size 8’

short.name =

‘size8’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta10’
hyperid =

‘98010’

name =

‘log size 9’

short.name =

‘size9’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta11’
hyperid =

‘98011’

name =

‘log size 10’

short.name =

‘size10’

initial =

‘2.30258509299405’

fixed =

‘TRUE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero inflated negBinomial, type 1, strata 3’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘zeroinflatednbinomial2’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘99001’

name =

‘log size’

short.name =

‘size’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘pc.mgamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘99002’

name =

‘log alpha’

short.name =

‘a’

initial =

‘0.693147180559945’

fixed =

‘FALSE’

prior =

‘gaussian’

param =

‘2 1’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Zero inflated negBinomial, type 2’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default log’

pdf =

‘zeroinflated’

Model ‘t’.

Number of hyperparmeters are 2.

Hyperparameter ‘theta1’
hyperid =

‘100001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘100002’

name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘5’

fixed =

‘FALSE’

prior =

‘pc.dof’

param =

‘15 0.5’

to.theta =

'function(x) log(x-2)'

from.theta =

'function(x) 2+exp(x)'

Properties:
doc =

‘Student-t likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘student-t’

Model ‘tstrata’.

Number of hyperparmeters are 11.

Hyperparameter ‘theta1’
hyperid =

‘101001’

name =

‘log degrees of freedom’

short.name =

‘dof’

initial =

‘4’

fixed =

‘FALSE’

prior =

‘pc.dof’

param =

‘15 0.5’

to.theta =

'function(x) log(x-5)'

from.theta =

'function(x) 5+exp(x)'

Hyperparameter ‘theta2’
hyperid =

‘101002’

name =

‘log precision1’

short.name =

‘prec1’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta3’
hyperid =

‘101003’

name =

‘log precision2’

short.name =

‘prec2’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta4’
hyperid =

‘101004’

name =

‘log precision3’

short.name =

‘prec3’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta5’
hyperid =

‘101005’

name =

‘log precision4’

short.name =

‘prec4’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta6’
hyperid =

‘101006’

name =

‘log precision5’

short.name =

‘prec5’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta7’
hyperid =

‘101007’

name =

‘log precision6’

short.name =

‘prec6’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta8’
hyperid =

‘101008’

name =

‘log precision7’

short.name =

‘prec7’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta9’
hyperid =

‘101009’

name =

‘log precision8’

short.name =

‘prec8’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta10’
hyperid =

‘101010’

name =

‘log precision9’

short.name =

‘prec9’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Hyperparameter ‘theta11’
hyperid =

‘101011’

name =

‘log precision10’

short.name =

‘prec10’

initial =

‘2’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘A stratified version of the Student-t likelihood’

survival =

‘FALSE’

discrete =

‘FALSE’

link =

‘default identity’

pdf =

‘tstrata’

Model ‘nmix’.

Number of hyperparmeters are 15.

Hyperparameter ‘theta1’
hyperid =

‘101101’

name =

‘beta1’

short.name =

‘beta1’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.5’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘101102’

name =

‘beta2’

short.name =

‘beta2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘101103’

name =

‘beta3’

short.name =

‘beta3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘101104’

name =

‘beta4’

short.name =

‘beta4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘101105’

name =

‘beta5’

short.name =

‘beta5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘101106’

name =

‘beta6’

short.name =

‘beta6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘101107’

name =

‘beta7’

short.name =

‘beta7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘101108’

name =

‘beta8’

short.name =

‘beta8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘101109’

name =

‘beta9’

short.name =

‘beta9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘101110’

name =

‘beta10’

short.name =

‘beta10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘101111’

name =

‘beta11’

short.name =

‘beta11’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
hyperid =

‘101112’

name =

‘beta12’

short.name =

‘beta12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
hyperid =

‘101113’

name =

‘beta13’

short.name =

‘beta13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta14’
hyperid =

‘101114’

name =

‘beta14’

short.name =

‘beta14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta15’
hyperid =

‘101115’

name =

‘beta15’

short.name =

‘beta15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Properties:
doc =

‘Binomial-Poisson mixture’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit probit’

pdf =

‘nmix’

Model ‘nmixnb’.

Number of hyperparmeters are 16.

Hyperparameter ‘theta1’
hyperid =

‘101121’

name =

‘beta1’

short.name =

‘beta1’

initial =

‘2.30258509299405’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 0.5’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta2’
hyperid =

‘101122’

name =

‘beta2’

short.name =

‘beta2’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta3’
hyperid =

‘101123’

name =

‘beta3’

short.name =

‘beta3’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta4’
hyperid =

‘101124’

name =

‘beta4’

short.name =

‘beta4’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta5’
hyperid =

‘101125’

name =

‘beta5’

short.name =

‘beta5’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta6’
hyperid =

‘101126’

name =

‘beta6’

short.name =

‘beta6’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta7’
hyperid =

‘101127’

name =

‘beta7’

short.name =

‘beta7’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta8’
hyperid =

‘101128’

name =

‘beta8’

short.name =

‘beta8’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta9’
hyperid =

‘101129’

name =

‘beta9’

short.name =

‘beta9’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta10’
hyperid =

‘101130’

name =

‘beta10’

short.name =

‘beta10’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta11’
hyperid =

‘101131’

name =

‘beta11’

short.name =

‘beta11’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta12’
hyperid =

‘101132’

name =

‘beta12’

short.name =

‘beta12’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta13’
hyperid =

‘101133’

name =

‘beta13’

short.name =

‘beta13’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta14’
hyperid =

‘101134’

name =

‘beta14’

short.name =

‘beta14’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta15’
hyperid =

‘101135’

name =

‘beta15’

short.name =

‘beta15’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘normal’

param =

‘0 1’

to.theta =

'function(x) x'

from.theta =

'function(x) x'

Hyperparameter ‘theta16’
hyperid =

‘101136’

name =

‘overdispersion’

short.name =

‘overdispersion’

initial =

‘0’

fixed =

‘FALSE’

prior =

‘pc.gamma’

param =

‘7’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘NegBinomial-Poisson mixture’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default logit probit’

pdf =

‘nmixnb’

Model ‘gp’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘101201’

name =

‘shape’

short.name =

‘xi’

initial =

‘-2.30258509299405’

fixed =

‘FALSE’

prior =

‘loggamma’

param =

‘1 15’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘Generalized Pareto likelihood’

status =

‘experimental’

survival =

‘FALSE’

discrete =

‘TRUE’

link =

‘default quantile’

pdf =

‘genPareto’

Model ‘logperiodogram’.

Number of hyperparmeters are 0.

Section ‘prior’.

Valid models in this section are:

Model ‘normal’.

Number of parameters in the prior = 2

Model ‘gaussian’.

Number of parameters in the prior = 2

Model ‘wishart1d’.

Number of parameters in the prior = 2

Model ‘wishart2d’.

Number of parameters in the prior = 4

Model ‘wishart3d’.

Number of parameters in the prior = 7

Model ‘wishart4d’.

Number of parameters in the prior = 11

Model ‘wishart5d’.

Number of parameters in the prior = 16

Model ‘loggamma’.

Number of parameters in the prior = 2

Model ‘gamma’.

Number of parameters in the prior = 2

Model ‘minuslogsqrtruncnormal’.

Number of parameters in the prior = 2

Model ‘logtnormal’.

Number of parameters in the prior = 2

Model ‘logtgaussian’.

Number of parameters in the prior = 2

Model ‘flat’.

Number of parameters in the prior = 0

Model ‘logflat’.

Number of parameters in the prior = 0

Model ‘logiflat’.

Number of parameters in the prior = 0

Model ‘mvnorm’.

Number of parameters in the prior = -1

Model ‘pc.alphaw’.

Number of parameters in the prior = 1

Model ‘pc.ar’.

Number of parameters in the prior = 1

Model ‘dirichlet’.

Number of parameters in the prior = 1

Model ‘none’.

Number of parameters in the prior = 0

Model ‘invalid’.

Number of parameters in the prior = 0

Model ‘betacorrelation’.

Number of parameters in the prior = 2

Model ‘logitbeta’.

Number of parameters in the prior = 2

Model ‘pc.prec’.

Number of parameters in the prior = 2

Model ‘pc.dof’.

Number of parameters in the prior = 2

Model ‘pc.cor0’.

Number of parameters in the prior = 2

Model ‘pc.cor1’.

Number of parameters in the prior = 2

Model ‘pc.fgnh’.

Number of parameters in the prior = 2

Model ‘pc.spde.GA’.

Number of parameters in the prior = 4

Model ‘pc.matern’.

Number of parameters in the prior = 3

Model ‘pc.range’.

Number of parameters in the prior = 2

Model ‘pc.gamma’.

Number of parameters in the prior = 1

Model ‘pc.mgamma’.

Number of parameters in the prior = 1

Model ‘pc.gammacount’.

Number of parameters in the prior = 1

Model ‘pc.gevtail’.

Number of parameters in the prior = 3

Model ‘pc’.

Number of parameters in the prior = 2

Model ‘ref.ar’.

Number of parameters in the prior = 0

Model ‘pom’.

Number of parameters in the prior = 0

Model ‘jeffreystdf’.

Number of parameters in the prior = 0

Model ‘expression:’.

Number of parameters in the prior = -1

Model ‘table:’.

Number of parameters in the prior = -1

Section ‘wrapper’.

Valid models in this section are:

Model ‘joint’.

Number of hyperparmeters are 1.

Hyperparameter ‘theta’
hyperid =

‘102001’

name =

‘log precision’

short.name =

‘prec’

initial =

‘0’

fixed =

‘TRUE’

prior =

‘loggamma’

param =

‘1 5e-05’

to.theta =

'function(x) log(x)'

from.theta =

'function(x) exp(x)'

Properties:
doc =

‘(experimental)’

constr =

‘FALSE’

nrow.ncol =

‘FALSE’

augmented =

‘FALSE’

aug.factor =

‘1’

aug.constr =

‘NULL’

n.div.by =

‘NULL’

n.required =

‘FALSE’

set.default.values =

‘FALSE’

pdf =

‘NA’

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
## How to set hyperparameters to pass as the argument 'hyper'. This
## format is compatible with the old style (using 'initial', 'fixed',
## 'prior', 'param'), but the new style using 'hyper' take preceedence
## over the old style. The two styles can also be mixed. The old style
## might be removed from the code in the future...

## Only a subset need to be given
   hyper = list(theta = list(initial = 2))
## The `name' can be used instead of 'theta', or 'theta1', 'theta2',...
   hyper = list(precision = list(initial = 2))
   hyper = list(precision = list(prior = "flat", param = numeric(0)))
   hyper = list(theta2 = list(initial=3), theta1 = list(prior = "gaussian"))
## The 'short.name' can be used instead of 'name'
   hyper = list(rho = list(param = c(0,1)))

inbo/INLA documentation built on Dec. 6, 2019, 9:51 a.m.

Related to models in inbo/INLA...