Description Usage Value Examples
This page describe the models implemented in inla
, divided into sections: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper .
1 |
Valid sections are: latent, group, mix, link, predictor, hazard, likelihood, prior, wrapper
Valid models in this section are:
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘1001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Gaussian random effects in dim=1’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘indep’
Number of hyperparmeters are 4.
‘2001’
‘beta’
‘b’
‘gaussian’
‘1 0.001’
‘1’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘2002’
‘prec.u’
‘prec’
‘loggamma’
‘1 1e-04’
‘9.21034037197618’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘2003’
‘mean.x’
‘mu.x’
‘gaussian’
‘0 1e-04’
‘0’
‘TRUE’
'function(x) x
'
'function(x) x
'
‘2004’
‘prec.x’
‘prec.x’
‘loggamma’
‘1 10000’
‘-9.21034037197618’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Classical measurement error model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘mec’
Number of hyperparmeters are 2.
‘3001’
‘beta’
‘b’
‘gaussian’
‘1 0.001’
‘1’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘3002’
‘prec.u’
‘prec’
‘loggamma’
‘1 1e-04’
‘6.90775527898214’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Berkson measurement error model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘meb’
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘4001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Random walk of order 1’
‘TRUE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘1e-05’
‘rw1’
Number of hyperparmeters are 1.
‘5001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Random walk of order 2’
‘TRUE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘0.001’
‘rw2’
Number of hyperparmeters are 1.
‘6001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Exact solution to the random walk of order 2’
‘TRUE’
‘FALSE’
‘FALSE’
‘2’
‘1’
‘NULL’
‘FALSE’
‘FALSE’
‘0.001’
‘crw2’
Number of hyperparmeters are 1.
‘7001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Seasonal model for time series’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘seasonal’
Number of hyperparmeters are 1.
‘8001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Besag area model (CAR-model)’
‘TRUE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘besag’
Number of hyperparmeters are 2.
‘9001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘9002’
‘scaling parameter’
‘a’
‘loggamma’
‘10 10’
‘0’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The shared Besag model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘1 2’
‘2’
‘TRUE’
‘TRUE’
‘besag2’
Number of hyperparmeters are 2.
‘10001’
‘log unstructured precision’
‘prec.unstruct’
‘loggamma’
‘1 5e-04’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘10002’
‘log spatial precision’
‘prec.spatial’
‘loggamma’
‘1 5e-04’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The BYM-model (Besag-York-Mollier model)’
‘TRUE’
‘FALSE’
‘TRUE’
‘2’
‘2’
‘NULL’
‘TRUE’
‘TRUE’
‘bym’
Number of hyperparmeters are 2.
‘11001’
‘log precision’
‘prec’
‘pc.prec’
‘1 0.01’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘11002’
‘logit phi’
‘phi’
‘pc’
‘0.5 0.5’
‘-3’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘The BYM-model with the PC priors’
‘TRUE’
‘FALSE’
‘TRUE’
‘2’
‘2’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘bym2’
Number of hyperparmeters are 2.
‘12001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-04’
‘2’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘12002’
‘log diagonal’
‘diag’
‘loggamma’
‘1 1’
‘1’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A proper version of the Besag model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘besagproper’
Number of hyperparmeters are 2.
‘13001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-04’
‘2’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘13002’
‘logit lambda’
‘lambda’
‘gaussian’
‘0 0.45’
‘3’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘An alternative proper version of the Besag model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘besagproper2’
Number of hyperparmeters are 2.
‘13101’
‘log precision’
‘prec’
‘pc.prec’
‘3 0.01’
‘1’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘13102’
‘logit H’
‘H’
‘pcfgnh’
‘0.9 0.1’
‘2’
‘FALSE’
'function(x) log((2*x-1)/(2*(1-x)))
'
'function(x) 0.5 + 0.5*exp(x)/(1+exp(x))
'
‘Fractional Gaussian noise model’
‘FALSE’
‘FALSE’
‘TRUE’
‘5’
‘1’
‘NULL’
‘FALSE’
‘TRUE’
‘4’
‘3 4’
‘fgn’
Number of hyperparmeters are 2.
‘13111’
‘log precision’
‘prec’
‘pc.prec’
‘3 0.01’
‘1’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘13112’
‘logit H’
‘H’
‘pcfgnh’
‘0.9 0.1’
‘2’
‘FALSE’
'function(x) log((2*x-1)/(2*(1-x)))
'
'function(x) 0.5 + 0.5*exp(x)/(1+exp(x))
'
‘Fractional Gaussian noise model (alt 2)’
‘FALSE’
‘FALSE’
‘TRUE’
‘4’
‘1’
‘NULL’
‘FALSE’
‘TRUE’
‘4’
‘3 4’
‘fgn’
Number of hyperparmeters are 3.
‘14001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘14002’
‘logit lag one correlation’
‘rho’
‘normal’
‘0 0.15’
‘2’
‘FALSE’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘14003’
‘mean’
‘mean’
‘normal’
‘0 1’
‘0’
‘TRUE’
'function(x) x
'
'function(x) x
'
‘Auto-regressive model of order 1 (AR(1))’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘ar1’
Number of hyperparmeters are 2.
‘14101’
‘log precision’
‘prec’
‘pc.prec’
‘1 0.01’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘14102’
‘logit lag one correlation’
‘rho’
‘pc.cor0’
‘0.5 0.5’
‘2’
‘FALSE’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘Auto-regressive model of order 1 w/covariates’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘experimental’
‘ar1c’
Number of hyperparmeters are 11.
‘15001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘pc.prec’
‘3 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘15002’
‘pacf1’
‘pacf1’
‘1’
‘FALSE’
‘pc.cor0’
‘0.5 0.5’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15003’
‘pacf2’
‘pacf2’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.4’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15004’
‘pacf3’
‘pacf3’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.3’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15005’
‘pacf4’
‘pacf4’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.2’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15006’
‘pacf5’
‘pacf5’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15007’
‘pacf6’
‘pacf6’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15008’
‘pacf7’
‘pacf7’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15009’
‘pacf8’
‘pacf8’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15010’
‘pacf9’
‘pacf9’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘15011’
‘pacf10’
‘pacf10’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘Auto-regressive model of order p (AR(p))’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘ar’
Number of hyperparmeters are 2.
‘16001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘16002’
‘log phi’
‘phi’
‘normal’
‘0 0.2’
‘-1’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Ornstein-Uhlenbeck process’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘ou’
Number of hyperparmeters are 13.
‘16101’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart2d’
‘4 1 1 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘16102’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘16103’
‘logit correlation’
‘cor’
‘4’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘16104’
‘gamma1’
‘g1’
‘1’
‘TRUE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16105’
‘gamma2’
‘g2’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16106’
‘gamma3’
‘g3’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16107’
‘gamma4’
‘g4’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16108’
‘gamma5’
‘g5’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16109’
‘gamma6’
‘g6’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16110’
‘gamma7’
‘g7’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16111’
‘gamma8’
‘g8’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16112’
‘gamma9’
‘g9’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘16113’
‘gamma10’
‘g10’
‘1’
‘FALSE’
‘normal’
‘1 36’
'function(x) x
'
'function(x) x
'
‘Intecept-slope model with Wishart-prior’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘experimental’
‘intslope’
Number of hyperparmeters are 1.
‘17001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A generic model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘generic0’
Number of hyperparmeters are 1.
‘18001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A generic model (type 0)’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘generic0’
Number of hyperparmeters are 2.
‘19001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘19002’
‘beta’
‘beta’
‘2’
‘FALSE’
‘gaussian’
‘0 0.1’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘A generic model (type 1)’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘generic1’
Number of hyperparmeters are 2.
‘20001’
‘log precision cmatrix’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘20002’
‘log precision random’
‘prec.random’
‘4’
‘FALSE’
‘loggamma’
‘1 0.001’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A generic model (type 2)’
‘FALSE’
‘FALSE’
‘FALSE’
‘2’
‘2’
‘NULL’
‘TRUE’
‘TRUE’
‘generic2’
Number of hyperparmeters are 11.
‘21001’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21002’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21003’
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21004’
‘log precision4’
‘prec4’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21005’
‘log precision5’
‘prec5’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21006’
‘log precision6’
‘prec6’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21007’
‘log precision7’
‘prec7’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21008’
‘log precision8’
‘prec8’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21009’
‘log precision9’
‘prec9’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21010’
‘log precision10’
‘prec10’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘21011’
‘log precision common’
‘prec.common’
‘0’
‘TRUE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A generic model (type 3)’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘generic3’
Number of hyperparmeters are 4.
‘22001’
‘theta.T’
‘T’
‘2’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘22002’
‘theta.K’
‘K’
‘-2’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘22003’
‘theta.KT’
‘KT’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘22004’
‘theta.OC’
‘OC’
‘-20’
‘TRUE’
‘normal’
‘0 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘A SPDE model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘spde’
Number of hyperparmeters are 100.
‘23001’
‘theta1’
‘t1’
‘0’
‘FALSE’
‘mvnorm’
‘1 1’
'function(x) x
'
'function(x) x
'
‘23002’
‘theta2’
‘t2’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23003’
‘theta3’
‘t3’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23004’
‘theta4’
‘t4’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23005’
‘theta5’
‘t5’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23006’
‘theta6’
‘t6’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23007’
‘theta7’
‘t7’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23008’
‘theta8’
‘t8’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23009’
‘theta9’
‘t9’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23010’
‘theta10’
‘t10’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23011’
‘theta11’
‘t11’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23012’
‘theta12’
‘t12’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23013’
‘theta13’
‘t13’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23014’
‘theta14’
‘t14’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23015’
‘theta15’
‘t15’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23016’
‘theta16’
‘t16’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23017’
‘theta17’
‘t17’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23018’
‘theta18’
‘t18’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23019’
‘theta19’
‘t19’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23020’
‘theta20’
‘t20’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23021’
‘theta21’
‘t21’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23022’
‘theta22’
‘t22’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23023’
‘theta23’
‘t23’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23024’
‘theta24’
‘t24’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23025’
‘theta25’
‘t25’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23026’
‘theta26’
‘t26’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23027’
‘theta27’
‘t27’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23028’
‘theta28’
‘t28’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23029’
‘theta29’
‘t29’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23030’
‘theta30’
‘t30’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23031’
‘theta31’
‘t31’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23032’
‘theta32’
‘t32’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23033’
‘theta33’
‘t33’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23034’
‘theta34’
‘t34’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23035’
‘theta35’
‘t35’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23036’
‘theta36’
‘t36’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23037’
‘theta37’
‘t37’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23038’
‘theta38’
‘t38’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23039’
‘theta39’
‘t39’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23040’
‘theta40’
‘t40’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23041’
‘theta41’
‘t41’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23042’
‘theta42’
‘t42’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23043’
‘theta43’
‘t43’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23044’
‘theta44’
‘t44’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23045’
‘theta45’
‘t45’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23046’
‘theta46’
‘t46’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23047’
‘theta47’
‘t47’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23048’
‘theta48’
‘t48’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23049’
‘theta49’
‘t49’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23050’
‘theta50’
‘t50’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23051’
‘theta51’
‘t51’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23052’
‘theta52’
‘t52’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23053’
‘theta53’
‘t53’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23054’
‘theta54’
‘t54’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23055’
‘theta55’
‘t55’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23056’
‘theta56’
‘t56’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23057’
‘theta57’
‘t57’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23058’
‘theta58’
‘t58’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23059’
‘theta59’
‘t59’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23060’
‘theta60’
‘t60’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23061’
‘theta61’
‘t61’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23062’
‘theta62’
‘t62’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23063’
‘theta63’
‘t63’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23064’
‘theta64’
‘t64’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23065’
‘theta65’
‘t65’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23066’
‘theta66’
‘t66’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23067’
‘theta67’
‘t67’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23068’
‘theta68’
‘t68’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23069’
‘theta69’
‘t69’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23070’
‘theta70’
‘t70’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23071’
‘theta71’
‘t71’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23072’
‘theta72’
‘t72’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23073’
‘theta73’
‘t73’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23074’
‘theta74’
‘t74’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23075’
‘theta75’
‘t75’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23076’
‘theta76’
‘t76’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23077’
‘theta77’
‘t77’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23078’
‘theta78’
‘t78’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23079’
‘theta79’
‘t79’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23080’
‘theta80’
‘t80’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23081’
‘theta81’
‘t81’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23082’
‘theta82’
‘t82’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23083’
‘theta83’
‘t83’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23084’
‘theta84’
‘t84’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23085’
‘theta85’
‘t85’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23086’
‘theta86’
‘t86’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23087’
‘theta87’
‘t87’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23088’
‘theta88’
‘t88’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23089’
‘theta89’
‘t89’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23090’
‘theta90’
‘t90’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23091’
‘theta91’
‘t91’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23092’
‘theta92’
‘t92’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23093’
‘theta93’
‘t93’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23094’
‘theta94’
‘t94’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23095’
‘theta95’
‘t95’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23096’
‘theta96’
‘t96’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23097’
‘theta97’
‘t97’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23098’
‘theta98’
‘t98’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23099’
‘theta99’
‘t99’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘23100’
‘theta100’
‘t100’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘A SPDE2 model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘spde2’
Number of hyperparmeters are 100.
‘24001’
‘theta1’
‘t1’
‘0’
‘FALSE’
‘mvnorm’
‘1 1’
'function(x) x
'
'function(x) x
'
‘24002’
‘theta2’
‘t2’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24003’
‘theta3’
‘t3’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24004’
‘theta4’
‘t4’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24005’
‘theta5’
‘t5’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24006’
‘theta6’
‘t6’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24007’
‘theta7’
‘t7’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24008’
‘theta8’
‘t8’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24009’
‘theta9’
‘t9’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24010’
‘theta10’
‘t10’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24011’
‘theta11’
‘t11’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24012’
‘theta12’
‘t12’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24013’
‘theta13’
‘t13’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24014’
‘theta14’
‘t14’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24015’
‘theta15’
‘t15’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24016’
‘theta16’
‘t16’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24017’
‘theta17’
‘t17’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24018’
‘theta18’
‘t18’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24019’
‘theta19’
‘t19’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24020’
‘theta20’
‘t20’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24021’
‘theta21’
‘t21’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24022’
‘theta22’
‘t22’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24023’
‘theta23’
‘t23’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24024’
‘theta24’
‘t24’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24025’
‘theta25’
‘t25’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24026’
‘theta26’
‘t26’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24027’
‘theta27’
‘t27’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24028’
‘theta28’
‘t28’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24029’
‘theta29’
‘t29’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24030’
‘theta30’
‘t30’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24031’
‘theta31’
‘t31’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24032’
‘theta32’
‘t32’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24033’
‘theta33’
‘t33’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24034’
‘theta34’
‘t34’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24035’
‘theta35’
‘t35’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24036’
‘theta36’
‘t36’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24037’
‘theta37’
‘t37’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24038’
‘theta38’
‘t38’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24039’
‘theta39’
‘t39’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24040’
‘theta40’
‘t40’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24041’
‘theta41’
‘t41’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24042’
‘theta42’
‘t42’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24043’
‘theta43’
‘t43’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24044’
‘theta44’
‘t44’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24045’
‘theta45’
‘t45’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24046’
‘theta46’
‘t46’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24047’
‘theta47’
‘t47’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24048’
‘theta48’
‘t48’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24049’
‘theta49’
‘t49’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24050’
‘theta50’
‘t50’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24051’
‘theta51’
‘t51’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24052’
‘theta52’
‘t52’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24053’
‘theta53’
‘t53’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24054’
‘theta54’
‘t54’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24055’
‘theta55’
‘t55’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24056’
‘theta56’
‘t56’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24057’
‘theta57’
‘t57’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24058’
‘theta58’
‘t58’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24059’
‘theta59’
‘t59’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24060’
‘theta60’
‘t60’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24061’
‘theta61’
‘t61’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24062’
‘theta62’
‘t62’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24063’
‘theta63’
‘t63’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24064’
‘theta64’
‘t64’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24065’
‘theta65’
‘t65’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24066’
‘theta66’
‘t66’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24067’
‘theta67’
‘t67’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24068’
‘theta68’
‘t68’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24069’
‘theta69’
‘t69’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24070’
‘theta70’
‘t70’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24071’
‘theta71’
‘t71’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24072’
‘theta72’
‘t72’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24073’
‘theta73’
‘t73’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24074’
‘theta74’
‘t74’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24075’
‘theta75’
‘t75’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24076’
‘theta76’
‘t76’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24077’
‘theta77’
‘t77’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24078’
‘theta78’
‘t78’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24079’
‘theta79’
‘t79’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24080’
‘theta80’
‘t80’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24081’
‘theta81’
‘t81’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24082’
‘theta82’
‘t82’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24083’
‘theta83’
‘t83’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24084’
‘theta84’
‘t84’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24085’
‘theta85’
‘t85’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24086’
‘theta86’
‘t86’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24087’
‘theta87’
‘t87’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24088’
‘theta88’
‘t88’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24089’
‘theta89’
‘t89’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24090’
‘theta90’
‘t90’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24091’
‘theta91’
‘t91’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24092’
‘theta92’
‘t92’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24093’
‘theta93’
‘t93’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24094’
‘theta94’
‘t94’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24095’
‘theta95’
‘t95’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24096’
‘theta96’
‘t96’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24097’
‘theta97’
‘t97’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24098’
‘theta98’
‘t98’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24099’
‘theta99’
‘t99’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘24100’
‘theta100’
‘t100’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘A SPDE3 model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘spde3’
Number of hyperparmeters are 1.
‘25001’
‘precision’
‘prec’
‘4’
‘FALSE’
‘wishart1d’
‘2 1e-04’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Gaussian random effect in dim=1 with Wishart prior’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 3.
‘26001’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart2d’
‘4 1 1 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘26002’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘26003’
‘logit correlation’
‘cor’
‘4’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘Gaussian random effect in dim=2 with Wishart prior’
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2’
‘2’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 6.
‘27001’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart3d’
‘7 1 1 1 0 0 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘27002’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘27003’
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘27004’
‘logit correlation12’
‘cor12’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘27005’
‘logit correlation13’
‘cor13’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘27006’
‘logit correlation23’
‘cor23’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘Gaussian random effect in dim=3 with Wishart prior’
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2 3’
‘3’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 10.
‘28001’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart4d’
‘11 1 1 1 1 0 0 0 0 0 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘28002’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘28003’
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘28004’
‘log precision4’
‘prec4’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘28005’
‘logit correlation12’
‘cor12’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘28006’
‘logit correlation13’
‘cor13’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘28007’
‘logit correlation14’
‘cor14’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘28008’
‘logit correlation23’
‘cor23’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘28009’
‘logit correlation24’
‘cor24’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘28010’
‘logit correlation34’
‘cor34’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘Gaussian random effect in dim=4 with Wishart prior’
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2 3 4’
‘4’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 15.
‘29001’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘wishart5d’
‘16 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0’
'function(x) log(x)
'
'function(x) exp(x)
'
‘29002’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘29003’
‘log precision3’
‘prec3’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘29004’
‘log precision4’
‘prec4’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘29005’
‘log precision5’
‘prec5’
‘4’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘29006’
‘logit correlation12’
‘cor12’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29007’
‘logit correlation13’
‘cor13’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29008’
‘logit correlation14’
‘cor14’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29009’
‘logit correlation15’
‘cor15’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29010’
‘logit correlation23’
‘cor23’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29011’
‘logit correlation24’
‘cor24’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29012’
‘logit correlation25’
‘cor25’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29013’
‘logit correlation34’
‘cor34’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29014’
‘logit correlation35’
‘cor35’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘29015’
‘logit correlation45’
‘cor45’
‘0’
‘FALSE’
‘none’
''
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘Gaussian random effect in dim=5 with Wishart prior’
‘FALSE’
‘FALSE’
‘TRUE’
‘1’
‘1 2 3 4 5’
‘5’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 3.
‘30001’
‘log precision1’
‘prec1’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘30002’
‘log precision2’
‘prec2’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘30003’
‘correlation’
‘cor’
‘4’
‘FALSE’
‘normal’
‘0 0.15’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘(This model is obsolute)’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘1 2’
‘2’
‘TRUE’
‘TRUE’
‘iid123d’
Number of hyperparmeters are 1.
‘31001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The z-model in a classical mixed model formulation’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘z’
‘experimental’
Number of hyperparmeters are 1.
‘32001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Thin-plate spline model’
‘TRUE’
‘TRUE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘rw2d’
Number of hyperparmeters are 2.
‘33001’
‘log precision’
‘prec’
‘pc.prec’
‘1 0.01’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘33002’
‘logit phi’
‘phi’
‘pc’
‘0.5 0.5’
‘3’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Thin-plate spline with iid noise’
‘TRUE’
‘TRUE’
‘TRUE’
‘2’
‘2’
‘NULL’
‘FALSE’
‘TRUE’
‘experimental’
‘rw2diid’
Number of hyperparmeters are 2.
‘34001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘34002’
‘rho’
‘rho’
‘0’
‘FALSE’
‘normal’
‘0 10’
'function(x) log(x/(1-x))
'
'function(x) 1/(1+exp(-x))
'
‘Spatial lag model’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘slm’
‘experimental’
Number of hyperparmeters are 2.
‘35001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘35002’
‘log range’
‘range’
‘2’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Matern covariance function on a regular grid’
‘FALSE’
‘TRUE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘TRUE’
‘matern2d’
Number of hyperparmeters are 3.
‘35101’
‘log precision’
‘prec’
‘3’
‘FALSE’
‘pc.prec’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘35102’
‘log range’
‘range’
‘0’
‘FALSE’
‘pc.range’
‘1 0.5’
'function(x) log(x)
'
'function(x) exp(x)
'
‘35103’
‘log nu’
‘nu’
‘-0.693147180559945’
‘TRUE’
‘loggamma’
‘0.5 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Dense Matern field’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘TRUE’
‘TRUE’
‘experimental’
‘dmatern’
Number of hyperparmeters are 1.
‘36001’
‘beta’
‘b’
‘1’
‘TRUE’
‘normal’
‘1 10’
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (log( - (low - x)/(high -x)))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low))
else {} stop("Condition not yet implemented")
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (low + exp(x)/(1+exp(x)) * (high - low))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x))
else {} stop("Condition not yet implemented")
‘Create a copy of a model component’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘NA’
Number of hyperparmeters are 1.
‘37001’
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘1 10’
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
stopifnot(low < high)
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (log( - (low - x)/(high -x)))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (log(x-low))
else {} stop("Condition not yet implemented")
'function(x, REPLACE.ME.low, REPLACE.ME.high) {}
' if (all(is.infinite(c(low, high))) || low == high) {}
stopifnot(low < high)
return (x)
else if (all(is.finite(c(low, high)))) {} stopifnot(low < high)
return (low + exp(x)/(1+exp(x)) * (high - low))
else if (is.finite(low) && is.infinite(high) && high > low) {} return (low + exp(x))
else {} stop("Condition not yet implemented")
‘Constrained linear effect’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘clinear’
Number of hyperparmeters are 3.
‘38001’
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘1 10’
'function(x) x
'
'function(x) x
'
‘38002’
‘loghalflife’
‘halflife’
‘3’
‘FALSE’
‘loggamma’
‘3 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘38003’
‘logshape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘10 10’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Sigmoidal effect of a covariate’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘sigm’
Number of hyperparmeters are 3.
‘39001’
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘1 10’
'function(x) x
'
'function(x) x
'
‘39002’
‘loghalflife’
‘halflife’
‘3’
‘FALSE’
‘loggamma’
‘3 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘39003’
‘logshape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘10 10’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Reverse sigmoidal effect of a covariate’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘sigm’
Number of hyperparmeters are 3.
‘39011’
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘39012’
‘alpha’
‘a’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘39013’
‘gamma’
‘g’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘A nonlinear model of a covariate’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘log1exp’
Number of hyperparmeters are 3.
‘39021’
‘beta’
‘b’
‘1’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘39022’
‘alpha1’
‘a1’
‘0’
‘FALSE’
‘loggamma’
‘0.1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘39023’
‘alpha2’
‘a2’
‘0’
‘FALSE’
‘loggamma’
‘0.1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A nonlinear model of a covariate’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘experimental’
‘logdist’
Valid models in this section are:
Number of hyperparmeters are 1.
‘40001’
‘logit correlation’
‘rho’
‘1’
‘FALSE’
‘normal’
‘0 0.2’
'function(x, REPLACE.ME.ngroup) log((1+x*(ngroup-1))/(1-x))
'
'function(x, REPLACE.ME.ngroup) (exp(x)-1)/(exp(x) + ngroup -1)
'
‘Exchangeable correlations’
Number of hyperparmeters are 1.
‘40101’
‘logit correlation’
‘rho’
‘1’
‘FALSE’
‘pc.cor0’
‘0.5 0.5’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Exchangeable positive correlations’
Number of hyperparmeters are 1.
‘41001’
‘logit correlation’
‘rho’
‘2’
‘FALSE’
‘normal’
‘0 0.15’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘AR(1) correlations’
Number of hyperparmeters are 11.
‘42001’
‘log precision’
‘prec’
‘0’
‘TRUE’
‘pc.prec’
‘3 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘42002’
‘pacf1’
‘pacf1’
‘2’
‘FALSE’
‘pc.cor0’
‘0.5 0.5’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42003’
‘pacf2’
‘pacf2’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.4’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42004’
‘pacf3’
‘pacf3’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.3’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42005’
‘pacf4’
‘pacf4’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.2’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42006’
‘pacf5’
‘pacf5’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42007’
‘pacf6’
‘pacf6’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42008’
‘pacf7’
‘pacf7’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42009’
‘pacf8’
‘pacf8’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42010’
‘pacf9’
‘pacf9’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘42011’
‘pacf10’
‘pacf10’
‘0’
‘FALSE’
‘pc.cor0’
‘0.5 0.1’
'function(x) log((1+x)/(1-x))
'
'function(x) 2*exp(x)/(1+exp(x))-1
'
‘AR(p) correlations’
Number of hyperparmeters are 1.
‘43001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Random walk of order 1’
Number of hyperparmeters are 1.
‘44001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Random walk of order 2’
Number of hyperparmeters are 1.
‘45001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Besag model’
Number of hyperparmeters are 1.
‘46001’
‘log precision’
‘prec’
‘loggamma’
‘1 5e-05’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Independent model’
Valid models in this section are:
Number of hyperparmeters are 1.
‘47001’
‘log precision’
‘prec’
‘pc.prec’
‘1 0.01’
‘0’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Gaussian mixture’
Number of hyperparmeters are 1.
‘47101’
‘log precision’
‘prec’
‘pc.mgamma’
‘4.8’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘LogGamma mixture’
Number of hyperparmeters are 1.
‘47201’
‘log precision’
‘prec’
‘pc.mgamma’
‘4.8’
‘4’
‘FALSE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Minus-LogGamma mixture’
Valid models in this section are:
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 2.
‘48001’
‘sensitivity’
‘sens’
‘logitbeta’
‘10 5’
‘1’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘48002’
‘specificity’
‘spec’
‘logitbeta’
‘10 5’
‘1’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Logit link with sensitivity and specificity’
‘NA’
Number of hyperparmeters are 1.
‘49001’
‘beta’
‘b’
‘normal’
‘0 100’
‘0’
‘TRUE’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Log-link with an offset’
‘logoffset’
Number of hyperparmeters are 1.
‘49011’
‘prob’
‘p’
‘normal’
‘-1 100’
‘-1’
‘FALSE’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Logit-link with an offset’
‘experimental’
‘logitoffset’
Number of hyperparmeters are 1.
‘49021’
‘log degrees of freedom’
‘dof’
‘1.6094379124341’
‘TRUE’
‘pc.dof’
‘50 0.5’
'function(x) log(x-2)
'
'function(x) 2+exp(x)
'
‘Robit link’
‘experimental’
‘robit’
Number of hyperparmeters are 1.
‘50001’
‘beta’
‘b’
‘normal’
‘0 100’
‘0’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘A test1-link function (experimental)’
‘NA’
Number of hyperparmeters are 11.
‘51001’
‘log precision’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) x
'
'function(x) x
'
‘51002’
‘beta1’
‘beta1’
‘0’
‘FALSE’
‘mvnorm’
‘0 100’
'function(x) x
'
'function(x) x
'
‘51003’
‘beta2’
‘beta2’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51004’
‘beta3’
‘beta3’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51005’
‘beta4’
‘beta4’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51006’
‘beta5’
‘beta5’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51007’
‘beta6’
‘beta6’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51008’
‘beta7’
‘beta7’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51009’
‘beta8’
‘beta8’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51010’
‘beta9’
‘beta9’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘51011’
‘beta10’
‘beta10’
‘0’
‘FALSE’
‘none’
''
'function(x) x
'
'function(x) x
'
‘A special1-link function (experimental)’
‘NA’
Number of hyperparmeters are 1.
‘52001’
‘beta’
‘b’
‘normal’
‘0 10’
‘0’
‘FALSE’
'function(x) x
'
'function(x) x
'
‘A special2-link function (experimental)’
‘NA’
Valid models in this section are:
Number of hyperparmeters are 1.
‘53001’
‘log precision’
‘prec’
‘12’
‘TRUE’
‘loggamma’
‘1 1e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘(not used)’
Valid models in this section are:
Number of hyperparmeters are 1.
‘54001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A random walk of order 1 for the log-hazard’
Number of hyperparmeters are 1.
‘55001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A random walk of order 2 for the log-hazard’
Valid models in this section are:
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 2.
‘56001’
‘overdispersion’
‘phi’
‘0’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘56002’
‘p’
‘p’
‘1’
‘TRUE’
‘normal’
‘1 100’
'function(x) x
'
'function(x) x
'
‘The generalized Poisson likelihood’
‘FALSE’
‘TRUE’
‘default log logoffset’
‘gpoisson’
‘experimental’
Number of hyperparmeters are 0.
Number of hyperparmeters are 10.
‘57101’
‘theta1’
‘theta1’
‘NA’
‘FALSE’
‘dirichlet’
‘3’
'function(x) x
'
'function(x) x
'
‘57102’
‘theta2’
‘theta2’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57103’
‘theta3’
‘theta3’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57104’
‘theta4’
‘theta4’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57105’
‘theta5’
‘theta5’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57106’
‘theta6’
‘theta6’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57107’
‘theta7’
‘theta7’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57108’
‘theta8’
‘theta8’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57109’
‘theta9’
‘theta9’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘57110’
‘theta10’
‘theta10’
‘NA’
‘FALSE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘Likelihood for the proportional odds model’
‘experimental’
‘FALSE’
‘TRUE’
‘default identity’
‘pom’
Number of hyperparmeters are 12.
‘57201’
‘spread’
‘sd’
‘0’
‘FALSE’
‘loggamma’
‘1 3’
'function(x) log(x)
'
'function(x) exp(x)
'
‘57202’
‘tail’
‘tail’
‘-4’
‘FALSE’
‘pc.gevtail’
‘7 0 0.5’
'function(x, interval = c(REPLACE.ME.low, REPLACE.ME.high)) log(-(interval[1] - x)/(interval[2] - x))
'
'function(x, interval = c(REPLACE.ME.low, REPLACE.ME.high)) interval[1] + (interval[2]-interval[1]) * exp(x)/(1.0 + exp(x))
'
‘57203’
‘beta1’
‘beta1’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57204’
‘beta2’
‘beta2’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57205’
‘beta3’
‘beta3’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57206’
‘beta4’
‘beta4’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57207’
‘beta5’
‘beta5’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57208’
‘beta6’
‘beta6’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57209’
‘beta7’
‘beta7’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57210’
‘beta8’
‘beta8’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57211’
‘beta9’
‘beta9’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘57212’
‘beta10’
‘beta’
‘NA’
‘FALSE’
‘normal’
‘0 300’
'function(x) x
'
'function(x) x
'
‘The Generalized Extreme Value likelihood (2nd variant)’
‘experimental’
‘FALSE’
‘FALSE’
‘default identity’
‘gev2’
Number of hyperparmeters are 1.
‘58001’
‘precision parameter’
‘prec’
‘4.60517018598809’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Gamma likelihood’
‘FALSE’
‘FALSE’
‘default log quantile’
‘gamma’
Number of hyperparmeters are 1.
‘58101’
‘precision parameter’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Gamma likelihood (survival)’
‘TRUE’
‘FALSE’
‘experimental’
‘default log quantile’
‘gammasurv’
Number of hyperparmeters are 1.
‘59001’
‘log alpha’
‘alpha’
‘0’
‘FALSE’
‘pc.gammacount’
‘3’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A Gamma generalisation of the Poisson likelihood’
‘FALSE’
‘FALSE’
‘default log’
‘experimental’
‘gammacount’
Number of hyperparmeters are 1.
‘60001’
‘precision parameter’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 0.001’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A quantile version of the Kumar likelihood’
‘FALSE’
‘FALSE’
‘default logit cauchit’
‘qkumar’
Number of hyperparmeters are 1.
‘60011’
‘log alpha’
‘alpha’
‘1’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A quantile loglogistic likelihood’
‘FALSE’
‘FALSE’
‘default log neglog’
‘qloglogistic’
Number of hyperparmeters are 1.
‘60021’
‘log alpha’
‘alpha’
‘1’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A quantile loglogistic likelihood (survival)’
‘TRUE’
‘FALSE’
‘default log neglog’
‘qloglogistic’
Number of hyperparmeters are 1.
‘61001’
‘precision parameter’
‘phi’
‘2.30258509299405’
‘FALSE’
‘loggamma’
‘1 0.1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Beta likelihood’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog’
‘beta’
Number of hyperparmeters are 1.
‘62001’
‘overdispersion’
‘rho’
‘0’
‘FALSE’
‘gaussian’
‘0 0.4’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘The Beta-Binomial likelihood’
‘FALSE’
‘TRUE’
‘default logit cauchit probit cloglog loglog robit’
‘betabinomial’
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘63001’
‘size’
‘size’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The negBinomial likelihood’
‘FALSE’
‘TRUE’
‘default log logoffset quantile’
‘nbinomial’
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘64001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The simplex likelihood’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog’
‘simplex’
Number of hyperparmeters are 2.
‘65001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘65002’
‘log precision offset’
‘precoffset’
‘72.0873067782343’
‘TRUE’
‘none’
''
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Gaussian likelihoood’
‘FALSE’
‘FALSE’
‘default identity logit cauchit log logoffset’
‘gaussian’
Number of hyperparmeters are 1.
‘67001’
‘log precision parameter’
‘prec’
‘2’
‘FALSE’
‘loggamma’
‘1 0.01’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The circular Gaussian likelihoood’
‘FALSE’
‘FALSE’
‘default tan’
‘circular-normal’
‘experimental’
Number of hyperparmeters are 1.
‘68001’
‘log precision parameter’
‘prec’
‘2’
‘FALSE’
‘loggamma’
‘1 0.005’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘The wrapped Cauchy likelihoood’
‘FALSE’
‘FALSE’
‘default tan’
‘wrapped-cauchy’
‘disabled’
Number of hyperparmeters are 2.
‘69001’
‘logshape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘100 100’
'function(x) log(x)
'
'function(x) exp(x)
'
‘69002’
‘lograte’
‘rate’
‘0’
‘FALSE’
‘loggamma’
‘100 100’
'function(x) log(x)
'
'function(x) exp(x)
'
‘(experimental)’
‘FALSE’
‘FALSE’
‘default identity’
‘iidgamma’
‘experimental’
Number of hyperparmeters are 2.
‘70001’
‘log.a’
‘a’
‘1’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘70002’
‘log.b’
‘b’
‘1’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘(experimental)’
‘FALSE’
‘FALSE’
‘default logit’
‘iidlogitbeta’
‘experimental’
Number of hyperparmeters are 1.
‘71001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘(experimental)’
‘FALSE’
‘FALSE’
‘default identity’
‘loggammafrailty’
‘experimental’
Number of hyperparmeters are 1.
‘72001’
‘log precision’
‘prec’
‘1’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Logistic likelihoood’
‘FALSE’
‘FALSE’
‘default identity’
‘logistic’
Number of hyperparmeters are 2.
‘73001’
‘log inverse scale’
‘iscale’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘73002’
‘logit skewness’
‘skew’
‘4’
‘FALSE’
‘gaussian’
‘0 10’
'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))
'
'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)
'
‘The Skew-Normal likelihoood’
‘FALSE’
‘FALSE’
‘default identity’
‘sn’
Number of hyperparmeters are 2.
‘74001’
‘log inverse scale’
‘iscale’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘74002’
‘logit skewness’
‘skew’
‘0’
‘FALSE’
‘gaussian’
‘0 10’
'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))
'
'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)
'
‘The Skew-Normal likelihoood’
‘FALSE’
‘FALSE’
‘default identity’
‘sn’
Number of hyperparmeters are 2.
‘75001’
‘log precision’
‘prec’
‘1’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘75002’
‘logit skewness’
‘skew’
‘0’
‘FALSE’
‘gaussian’
‘0 10’
'function(x, shape.max = 1) log((1+x/shape.max)/(1-x/shape.max))
'
'function(x, shape.max = 1) shape.max*(2*exp(x)/(1+exp(x))-1)
'
‘The Skew-Normal likelihoood (alt param)’
‘FALSE’
‘FALSE’
‘default identity’
‘experimental’
‘sn2’
Number of hyperparmeters are 2.
‘76001’
‘log precision’
‘prec’
‘4’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘76002’
‘tail parameter’
‘tail’
‘0’
‘FALSE’
‘gaussian’
‘0 25’
'function(x) x
'
'function(x) x
'
‘The Generalized Extreme Value likelihood’
‘FALSE’
‘FALSE’
‘default identity’
‘experimental’
‘gev’
Number of hyperparmeters are 1.
‘77101’
‘log precision’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The log-Normal likelihood’
‘FALSE’
‘FALSE’
‘default identity’
‘lognormal’
Number of hyperparmeters are 1.
‘78001’
‘log precision’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The log-Normal likelihood (survival)’
‘TRUE’
‘FALSE’
‘default identity’
‘lognormal’
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 0.
Number of hyperparmeters are 1.
‘79001’
‘log alpha’
‘alpha’
‘0.1’
‘FALSE’
‘pc.alphaw’
‘5’
'function(x, sc = 0.1) log(x)/sc
'
'function(x, sc = 0.1) exp(sc*x)
'
‘The Weibull likelihood’
‘FALSE’
‘FALSE’
‘default log neglog quantile’
‘weibull’
Number of hyperparmeters are 1.
‘79101’
‘log alpha’
‘alpha’
‘0.1’
‘FALSE’
‘pc.alphaw’
‘5’
'function(x, sc = 0.1) log(x)/sc
'
'function(x, sc = 0.1) exp(sc*x)
'
‘The Weibull likelihood (survival)’
‘TRUE’
‘FALSE’
‘default log neglog quantile’
‘weibull’
Number of hyperparmeters are 1.
‘80001’
‘log alpha’
‘alpha’
‘1’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The loglogistic likelihood’
‘FALSE’
‘FALSE’
‘default log neglog’
‘loglogistic’
Number of hyperparmeters are 1.
‘80011’
‘log alpha’
‘alpha’
‘1’
‘FALSE’
‘loggamma’
‘25 25’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The loglogistic likelihood (survival)’
‘TRUE’
‘FALSE’
‘default log neglog’
‘loglogistic’
Number of hyperparmeters are 2.
‘81001’
‘log alpha’
‘a’
‘0.1’
‘FALSE’
‘pc.alphaw’
‘5’
'function(x, sc = 0.1) log(x)/sc
'
'function(x, sc = 0.1) exp(sc*x)
'
‘81002’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘The Weibull-cure likelihood (survival)’
‘TRUE’
‘FALSE’
‘default log neglog’
‘weibullcure’
Number of hyperparmeters are 1.
‘82001’
‘log precision’
‘prec’
‘500’
‘TRUE’
‘loggamma’
‘1 0.005’
'function(x) log(x)
'
'function(x) exp(x)
'
‘The Gaussian stochvol likelihood’
‘FALSE’
‘FALSE’
‘default log’
‘stochvolgaussian’
Number of hyperparmeters are 1.
‘83001’
‘log degrees of freedom’
‘dof’
‘4’
‘FALSE’
‘pc.dof’
‘15 0.5’
'function(x) log(x-2)
'
'function(x) 2+exp(x)
'
‘The Student-t stochvol likelihood’
‘FALSE’
‘FALSE’
‘default log’
‘stochvolt’
Number of hyperparmeters are 2.
‘84001’
‘skewness’
‘skew’
‘0’
‘FALSE’
‘gaussian’
‘0 10’
'function(x) x
'
'function(x) x
'
‘84002’
‘shape’
‘shape’
‘0’
‘FALSE’
‘loggamma’
‘1 0.5’
'function(x) log(x-1)
'
'function(x) 1+exp(x)
'
‘The Normal inverse Gaussian stochvol likelihood’
‘FALSE’
‘FALSE’
‘default log’
‘stochvolnig’
Number of hyperparmeters are 1.
‘85001’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero-inflated Poisson, type 0’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 1.
‘86001’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero-inflated Poisson, type 1’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 1.
‘87001’
‘log alpha’
‘a’
‘0.693147180559945’
‘FALSE’
‘gaussian’
‘0.693147180559945 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero-inflated Poisson, type 2’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘88001’
‘overdispersion’
‘rho’
‘0’
‘FALSE’
‘gaussian’
‘0 0.4’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘88002’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero-inflated Beta-Binomial, type 0’
‘FALSE’
‘TRUE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 2.
‘89001’
‘overdispersion’
‘rho’
‘0’
‘FALSE’
‘gaussian’
‘0 0.4’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘89002’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero-inflated Beta-Binomial, type 1’
‘FALSE’
‘TRUE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 1.
‘90001’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero-inflated Binomial, type 0’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 1.
‘91001’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero-inflated Binomial, type 1’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 1.
‘92001’
‘alpha’
‘alpha’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero-inflated Binomial, type 2’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 2.
‘93001’
‘alpha1’
‘alpha1’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x)
'
'function(x) exp(x)
'
‘93002’
‘alpha2’
‘alpha2’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero and N inflated binomial, type 2’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog robit’
‘NA’
Number of hyperparmeters are 2.
‘93101’
‘alpha0’
‘alpha0’
‘1’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘93102’
‘alphaN’
‘alphaN’
‘1’
‘FALSE’
‘loggamma’
‘1 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero and N inflated binomial, type 3’
‘experimental’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 2.
‘94001’
‘log alpha’
‘a’
‘0.693147180559945’
‘FALSE’
‘gaussian’
‘0.693147180559945 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘94002’
‘beta’
‘b’
‘0’
‘FALSE’
‘gaussian’
‘0 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero inflated Beta-Binomial, type 2’
‘FALSE’
‘FALSE’
‘default logit cauchit probit cloglog loglog robit’
‘zeroinflated’
Number of hyperparmeters are 2.
‘95001’
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘95002’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero inflated negBinomial, type 0’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘96001’
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘96002’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero inflated negBinomial, type 1’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 11.
‘97001’
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘97002’
‘logit probability 1’
‘prob1’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97003’
‘logit probability 2’
‘prob2’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97004’
‘logit probability 3’
‘prob3’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97005’
‘logit probability 4’
‘prob4’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97006’
‘logit probability 5’
‘prob5’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97007’
‘logit probability 6’
‘prob6’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97008’
‘logit probability 7’
‘prob7’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97009’
‘logit probability 8’
‘prob8’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97010’
‘logit probability 9’
‘prob9’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘97011’
‘logit probability 10’
‘prob10’
‘-1’
‘TRUE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘Zero inflated negBinomial, type 1, strata 2’
‘experimental’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 11.
‘98001’
‘logit probability’
‘prob’
‘-1’
‘FALSE’
‘gaussian’
‘-1 0.2’
'function(x) log(x/(1-x))
'
'function(x) exp(x)/(1+exp(x))
'
‘98002’
‘log size 1’
‘size1’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98003’
‘log size 2’
‘size2’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98004’
‘log size 3’
‘size3’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98005’
‘log size 4’
‘size4’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98006’
‘log size 5’
‘size5’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98007’
‘log size 6’
‘size6’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98008’
‘log size 7’
‘size7’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98009’
‘log size 8’
‘size8’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98010’
‘log size 9’
‘size9’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘98011’
‘log size 10’
‘size10’
‘2.30258509299405’
‘TRUE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero inflated negBinomial, type 1, strata 3’
‘experimental’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘99001’
‘log size’
‘size’
‘2.30258509299405’
‘FALSE’
‘pc.mgamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘99002’
‘log alpha’
‘a’
‘0.693147180559945’
‘FALSE’
‘gaussian’
‘2 1’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Zero inflated negBinomial, type 2’
‘FALSE’
‘FALSE’
‘default log’
‘zeroinflated’
Number of hyperparmeters are 2.
‘100001’
‘log precision’
‘prec’
‘0’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘100002’
‘log degrees of freedom’
‘dof’
‘5’
‘FALSE’
‘pc.dof’
‘15 0.5’
'function(x) log(x-2)
'
'function(x) 2+exp(x)
'
‘Student-t likelihood’
‘FALSE’
‘FALSE’
‘default identity’
‘student-t’
Number of hyperparmeters are 11.
‘101001’
‘log degrees of freedom’
‘dof’
‘4’
‘FALSE’
‘pc.dof’
‘15 0.5’
'function(x) log(x-5)
'
'function(x) 5+exp(x)
'
‘101002’
‘log precision1’
‘prec1’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101003’
‘log precision2’
‘prec2’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101004’
‘log precision3’
‘prec3’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101005’
‘log precision4’
‘prec4’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101006’
‘log precision5’
‘prec5’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101007’
‘log precision6’
‘prec6’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101008’
‘log precision7’
‘prec7’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101009’
‘log precision8’
‘prec8’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101010’
‘log precision9’
‘prec9’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘101011’
‘log precision10’
‘prec10’
‘2’
‘FALSE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘A stratified version of the Student-t likelihood’
‘FALSE’
‘FALSE’
‘default identity’
‘tstrata’
Number of hyperparmeters are 15.
‘101101’
‘beta1’
‘beta1’
‘2.30258509299405’
‘FALSE’
‘normal’
‘0 0.5’
'function(x) x
'
'function(x) x
'
‘101102’
‘beta2’
‘beta2’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101103’
‘beta3’
‘beta3’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101104’
‘beta4’
‘beta4’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101105’
‘beta5’
‘beta5’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101106’
‘beta6’
‘beta6’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101107’
‘beta7’
‘beta7’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101108’
‘beta8’
‘beta8’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101109’
‘beta9’
‘beta9’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101110’
‘beta10’
‘beta10’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101111’
‘beta11’
‘beta11’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101112’
‘beta12’
‘beta12’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101113’
‘beta13’
‘beta13’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101114’
‘beta14’
‘beta14’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101115’
‘beta15’
‘beta15’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘Binomial-Poisson mixture’
‘experimental’
‘FALSE’
‘TRUE’
‘default logit probit’
‘nmix’
Number of hyperparmeters are 16.
‘101121’
‘beta1’
‘beta1’
‘2.30258509299405’
‘FALSE’
‘normal’
‘0 0.5’
'function(x) x
'
'function(x) x
'
‘101122’
‘beta2’
‘beta2’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101123’
‘beta3’
‘beta3’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101124’
‘beta4’
‘beta4’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101125’
‘beta5’
‘beta5’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101126’
‘beta6’
‘beta6’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101127’
‘beta7’
‘beta7’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101128’
‘beta8’
‘beta8’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101129’
‘beta9’
‘beta9’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101130’
‘beta10’
‘beta10’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101131’
‘beta11’
‘beta11’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101132’
‘beta12’
‘beta12’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101133’
‘beta13’
‘beta13’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101134’
‘beta14’
‘beta14’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101135’
‘beta15’
‘beta15’
‘0’
‘FALSE’
‘normal’
‘0 1’
'function(x) x
'
'function(x) x
'
‘101136’
‘overdispersion’
‘overdispersion’
‘0’
‘FALSE’
‘pc.gamma’
‘7’
'function(x) log(x)
'
'function(x) exp(x)
'
‘NegBinomial-Poisson mixture’
‘experimental’
‘FALSE’
‘TRUE’
‘default logit probit’
‘nmixnb’
Number of hyperparmeters are 1.
‘101201’
‘shape’
‘xi’
‘-2.30258509299405’
‘FALSE’
‘loggamma’
‘1 15’
'function(x) log(x)
'
'function(x) exp(x)
'
‘Generalized Pareto likelihood’
‘experimental’
‘FALSE’
‘TRUE’
‘default quantile’
‘genPareto’
Number of hyperparmeters are 0.
Valid models in this section are:
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 4
Number of parameters in the prior = 7
Number of parameters in the prior = 11
Number of parameters in the prior = 16
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = -1
Number of parameters in the prior = 1
Number of parameters in the prior = 1
Number of parameters in the prior = 1
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 2
Number of parameters in the prior = 4
Number of parameters in the prior = 3
Number of parameters in the prior = 2
Number of parameters in the prior = 1
Number of parameters in the prior = 1
Number of parameters in the prior = 1
Number of parameters in the prior = 3
Number of parameters in the prior = 2
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = 0
Number of parameters in the prior = -1
Number of parameters in the prior = -1
Valid models in this section are:
Number of hyperparmeters are 1.
‘102001’
‘log precision’
‘prec’
‘0’
‘TRUE’
‘loggamma’
‘1 5e-05’
'function(x) log(x)
'
'function(x) exp(x)
'
‘(experimental)’
‘FALSE’
‘FALSE’
‘FALSE’
‘1’
‘NULL’
‘NULL’
‘FALSE’
‘FALSE’
‘NA’
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## How to set hyperparameters to pass as the argument 'hyper'. This
## format is compatible with the old style (using 'initial', 'fixed',
## 'prior', 'param'), but the new style using 'hyper' take preceedence
## over the old style. The two styles can also be mixed. The old style
## might be removed from the code in the future...
## Only a subset need to be given
hyper = list(theta = list(initial = 2))
## The `name' can be used instead of 'theta', or 'theta1', 'theta2',...
hyper = list(precision = list(initial = 2))
hyper = list(precision = list(prior = "flat", param = numeric(0)))
hyper = list(theta2 = list(initial=3), theta1 = list(prior = "gaussian"))
## The 'short.name' can be used instead of 'name'
hyper = list(rho = list(param = c(0,1)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.