Description Usage Arguments Value Author(s) Examples
This function scales an intrinsic GMRF model so the geometric mean of the marginal variances is one
1 2 | inla.scale.model(Q, constr = NULL, eps = sqrt(.Machine$double.eps))
|
Q |
A SPD matrix, either as a (dense) matrix or |
constr |
Linear constraints spanning the null-space of |
eps |
A small constant added to the diagonal of |
inla.scale.model
returns a sparseMatrix
of type dgTMatrix
scaled so the geometric mean of the marginal variances (of the possible
non-singular part of Q
) is one, for each connected component of the matrix.
Havard Rue hrue@r-inla.org
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Q is singular
data(Germany)
g = system.file("demodata/germany.graph", package="INLA")
Q = -inla.graph2matrix(g)
diag(Q) = 0
diag(Q) = -rowSums(Q)
n = dim(Q)[1]
Q.scaled = inla.scale.model(Q, constr = list(A = matrix(1, 1, n), e=0))
print(diag(INLA:::inla.ginv(Q.scaled)))
## Q is singular with 3 connected components
g = inla.read.graph("6 1 2 2 3 2 2 1 3 3 2 1 2 4 1 5 5 1 4 6 0")
print(paste("Number of connected components", g$cc$n))
Q = -inla.graph2matrix(g)
diag(Q) = 0
diag(Q) = -rowSums(Q)
n = dim(Q)[1]
Q.scaled = inla.scale.model(Q, constr = list(A = matrix(1, 1, n), e=0))
print(diag(INLA:::inla.ginv(Q.scaled)))
## Q is non-singular with 3 connected components. no constraints needed
diag(Q) = diag(Q) + 1
Q.scaled = inla.scale.model(Q)
print(diag(INLA:::inla.ginv(Q.scaled)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.