R/calc_reg_core_area_species.R

Defines functions calc_reg_core_area_species

Documented in calc_reg_core_area_species

#' aggregate regeneration parameters by plot, species and year
#'
#' This function calculates for each plot, species and year the number of
#' seedlings and established regeneration per ha (or interval with mean
#' and confidence interval using a log transformation), the number and
#' percentage of subplots in which the species is regenerating and
#' the approximate rubbing damage percentage per hectare.
#' This calculation is designed for core areas,that consist of different
#' subplots.
#'
#' @inheritParams calculate_regeneration
#'
#' @return dataframe with columns `plot`, `species`, `year`,
#' `nr_of_subplots_with_regeneration`, `perc_subplots_with_regeneration`,
#' `mean_number_established_ha`,
#' `lci_number_established_ha`, `uci_number_established_ha`,
#' `mean_number_seedlings_ha`,
#' `lci_number_seedlings_ha`, `uci_number_seedlings_ha`,
#' `mean_rubbing_damage_perc_established`,
#' `lci_rubbing_damage_perc_established`,
#' `uci_rubbing_damage_perc_established`,
#' `mean_rubbing_damage_perc_seedlings`, `lci_rubbing_damage_perc_seedlings`,
#' `uci_rubbing_damage_perc_seedlings`,
#' `approx_nr_established_ha`, `approx_nr_seedlings_ha`,
#' `approx_rubbing_damage_perc_established`,
#' `approx_rubbing_damage_perc_seedlings`.
#'
#' @examples
#' library(forrescalc)
#' # (add path to your own fieldmap database here)
#' path_to_fieldmapdb <-
#'   system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
#' data_regeneration_CA <-
#'   load_data_regeneration(path_to_fieldmapdb, plottype = "CA")
#' calc_reg_core_area_species(data_regeneration_CA)
#'
#' @export
#'
#' @importFrom dplyr %>% distinct filter group_by n_distinct select summarise
#'   ungroup
#' @importFrom rlang .data
#'
calc_reg_core_area_species <- function(data_regeneration) {
  check_forrescalc_version_attr(data_regeneration)
  no_subcircle <- data_regeneration %>%
    filter(
      is.na(.data$subcircle),
      .data$nr_of_regeneration != 0
    ) %>%
    distinct(.data$plot_id)
  if (nrow(no_subcircle) > 0) {
    warning(
      sprintf(
        "Records of dataset data_regeneration with subcircle NA are ignored for this calculation. Such record(s) with nr_of_regeneration different from 0 occur in plot_id %s", #nolint: line_length_linter
        paste(no_subcircle$plot_id, collapse = ", ")
      )
    )
  }
  unique_plotarea_ha <- data_regeneration %>%
    group_by(
      .data$plot_id, .data$year, .data$period, .data$subplot_id, .data$subcircle
    ) %>%
    summarise(
      n_plotarea_ha = n_distinct(.data$plotarea_ha),
      n_plottype = n_distinct(.data$plottype)
    ) %>%
    ungroup() %>%
    filter(.data$n_plotarea_ha > 1 | .data$n_plottype > 1)
  if (nrow(unique_plotarea_ha) > 0) {
    warning(
      sprintf(
        "Records of dataset data_regeneration from the same plot_id, year, period, subplot_id and subcircle are supposed to have the same plotarea_ha and plottype. This is not the case in plot_id %s. Here the sum of the number of regeneration is divided by the average of the plotarea_ha, without applying any weighing for the area in which the regeneration is observed.", #nolint: line_length_linter
        paste(unique_plotarea_ha$plot_id, collapse = ", ")
      )
    )
  }
  by_plot_species <- data_regeneration %>%
    group_by(.data$plot_id, .data$period) %>%
    mutate(
      n_subplots = n_distinct(.data$subplot_id),
      min_number_established =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
               .data$min_number_of_regeneration, NA),
      max_number_established =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
               .data$max_number_of_regeneration, NA),
      min_number_seedlings =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
               .data$min_number_of_regeneration, NA),
      max_number_seedlings =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
               .data$max_number_of_regeneration, NA),
      approx_nr_established =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
               .data$approx_nr_regeneration, NA),
      approx_nr_seedlings =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
               .data$approx_nr_regeneration, NA),
      rubbing_damage_established =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
               .data$rubbing_damage_number, NA),
      rubbing_damage_seedlings =
        ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
               .data$rubbing_damage_number, NA)
    ) %>%
    ungroup() %>%
    group_by(
      .data$plottype, .data$plot_id, .data$period, .data$year, .data$species
    ) %>%
    summarise(
      nr_of_subplots_with_regeneration = n_distinct(.data$subplot_id),
      perc_subplots_with_regeneration =
        .data$nr_of_subplots_with_regeneration * 100 / unique(.data$n_subplots),
      plotarea_ha = mean(.data$plotarea_ha, na.rm = TRUE),
      established_interval =
        sum_intervals(
          var_min = .data$min_number_established,
          var_max = .data$max_number_established,
          transformation = "log", na_rm = TRUE
        ),
      seedlings_interval =
        sum_intervals(
          var_min = .data$min_number_seedlings,
          var_max = .data$max_number_seedlings,
          transformation = "log", na_rm = TRUE
        ),
      rubbing_damage_nr_established =
        sum(.data$rubbing_damage_established, na.rm = TRUE),
      not_na_rubbing_established =
        sum(!is.na(.data$rubbing_damage_established)),
      rubbing_damage_nr_seedlings =
        sum(.data$rubbing_damage_seedlings, na.rm = TRUE),
      not_na_rubbing_seedlings = sum(!is.na(.data$rubbing_damage_seedlings)),
      approx_nr_established = sum(.data$approx_nr_established, na.rm = TRUE),
      approx_nr_seedlings = sum(.data$approx_nr_seedlings, na.rm = TRUE)
    ) %>%
    ungroup() %>%
    mutate(
      mean_number_established = .data$established_interval$sum,
      lci_number_established = .data$established_interval$lci,
      uci_number_established = .data$established_interval$uci,
      mean_number_seedlings = .data$seedlings_interval$sum,
      lci_number_seedlings = .data$seedlings_interval$lci,
      uci_number_seedlings = .data$seedlings_interval$uci,
      rubbing_damage_nr_established =
        ifelse(
          .data$not_na_rubbing_established > 0,
          .data$rubbing_damage_nr_established,
          NA
        ),
      rubbing_damage_nr_seedlings =
        ifelse(
          .data$not_na_rubbing_seedlings > 0,
          .data$rubbing_damage_nr_seedlings,
          NA
        ),
      rubbing_damage_nr_established =
        ifelse(
          is.na(.data$rubbing_damage_nr_established) &
            !is.na(.data$rubbing_damage_nr_seedlings),
          0,
          .data$rubbing_damage_nr_established
        ),
      rubbing_damage_nr_seedlings =
        ifelse(
          is.na(.data$rubbing_damage_nr_seedlings) &
            !is.na(.data$rubbing_damage_nr_established),
          0,
          .data$rubbing_damage_nr_seedlings
        )
    ) %>%
    mutate(mean_number_established =
             ifelse(is.na(.data$mean_number_established)
                    & .data$mean_number_seedlings > 0
                    , 0
                    , .data$mean_number_established),
           lci_number_established =
             ifelse(is.na(.data$lci_number_established)
                    & .data$mean_number_seedlings > 0
                    , 0
                    , .data$lci_number_established),
           uci_number_established =
             ifelse(is.na(.data$uci_number_established)
                    & .data$mean_number_seedlings > 0
                    , 0
                    , .data$uci_number_established),
           mean_number_seedlings =
             ifelse(is.na(.data$mean_number_seedlings)
                    & .data$mean_number_established > 0
                    , 0
                    , .data$mean_number_seedlings),
           lci_number_seedlings =
             ifelse(is.na(.data$lci_number_seedlings)
                    & .data$mean_number_established > 0
                    , 0
                    , .data$lci_number_seedlings),
           uci_number_seedlings =
             ifelse(is.na(.data$uci_number_seedlings)
                    & .data$mean_number_established > 0
                    , 0
                    , .data$uci_number_seedlings),
           approx_nr_established =
             ifelse(.data$approx_nr_established == 0 &
                      is.na(.data$approx_nr_seedlings),
                    NA,
                    .data$approx_nr_established),
           approx_nr_seedlings =
             ifelse(.data$approx_nr_seedlings == 0 &
                      is.na(.data$approx_nr_established),
                    NA,
                    .data$approx_nr_seedlings),
           mean_number_established_ha =
             .data$mean_number_established / .data$plotarea_ha,
           lci_number_established_ha =
             .data$lci_number_established / .data$plotarea_ha,
           uci_number_established_ha =
             .data$uci_number_established / .data$plotarea_ha,
           mean_number_seedlings_ha =
             .data$mean_number_seedlings / .data$plotarea_ha,
           lci_number_seedlings_ha =
             .data$lci_number_seedlings / .data$plotarea_ha,
           uci_number_seedlings_ha =
             .data$uci_number_seedlings / .data$plotarea_ha,
           rubbing_damage_nr_established_ha =
             .data$rubbing_damage_nr_established / .data$plotarea_ha,
           rubbing_damage_nr_seedlings_ha =
             .data$rubbing_damage_nr_seedlings / .data$plotarea_ha,
           mean_rubbing_damage_perc_established =
             .data$rubbing_damage_nr_established * 100 /
               .data$mean_number_established,
           lci_rubbing_damage_perc_established =
             .data$rubbing_damage_nr_established * 100 /
               .data$uci_number_established,
           uci_rubbing_damage_perc_established =
             .data$rubbing_damage_nr_established * 100 /
               .data$lci_number_established,
           mean_rubbing_damage_perc_seedlings =
             .data$rubbing_damage_nr_seedlings * 100 /
               .data$mean_number_seedlings,
           lci_rubbing_damage_perc_seedlings =
             .data$rubbing_damage_nr_seedlings * 100 /
               .data$uci_number_seedlings,
           uci_rubbing_damage_perc_seedlings =
             .data$rubbing_damage_nr_seedlings * 100 /
               .data$lci_number_seedlings,
           approx_nr_established_ha =
             .data$approx_nr_established / .data$plotarea_ha,
           approx_nr_seedlings_ha =
             .data$approx_nr_seedlings / .data$plotarea_ha,
           approx_rubbing_damage_perc_established = pmin(
             .data$rubbing_damage_nr_established * 100 /
               .data$approx_nr_established, 100),
           approx_rubbing_damage_perc_seedlings = pmin(
             .data$rubbing_damage_nr_seedlings * 100 /
               .data$approx_nr_seedlings, 100)
    ) %>%
    select(
      "plottype", "plot_id", "period", "year", "species",
      "nr_of_subplots_with_regeneration", "perc_subplots_with_regeneration",
      "approx_nr_established_ha", "approx_nr_seedlings_ha",
      "approx_rubbing_damage_perc_established",
      "approx_rubbing_damage_perc_seedlings",
      "rubbing_damage_nr_established_ha", "rubbing_damage_nr_seedlings_ha",
      "mean_number_established_ha", "lci_number_established_ha",
      "uci_number_established_ha", "mean_number_seedlings_ha",
      "lci_number_seedlings_ha", "uci_number_seedlings_ha",
      "mean_rubbing_damage_perc_established",
      "lci_rubbing_damage_perc_established",
      "uci_rubbing_damage_perc_established",
      "mean_rubbing_damage_perc_seedlings", "lci_rubbing_damage_perc_seedlings",
      "uci_rubbing_damage_perc_seedlings"
    )

  attr(by_plot_species, "database") <- attr(data_regeneration, "database")
  attr(by_plot_species, "forrescalc") <- attr(data_regeneration, "forrescalc")

  return(by_plot_species)
}
inbo/forrescalc documentation built on Sept. 28, 2024, 11:45 a.m.