#' calculate species number by plot and year
#'
#' This function calculates for each plot and year the number of species, total
#' number of seedlings and established regeneration (or interval with mean
#' and confidence interval using a log transformation) and
#' approximate rubbing damage percentage for seedlings and established
#' regeneration.
#' For core area plots, these variables are calculated for each subplot.
#'
#' @inheritParams calculate_regeneration
#'
#' @return dataframe with columns `plot`, `subplot`, `year`, `period`,
#' `number_of_tree_species`, `nr_of_tree_species_established`,
#' `mean_number_established_ha`, `lci_number_established_ha`,
#' `uci_number_established_ha`,
#' `mean_number_seedlings_ha`, `lci_number_seedlings_ha`,
#' `uci_number_seedlings_ha`,
#' `mean_rubbing_damage_perc_established`,
#' `lci_rubbing_damage_perc_established`,
#' `uci_rubbing_damage_perc_established`,
#' `mean_rubbing_damage_perc_seedlings`, `lci_rubbing_damage_perc_seedlings`,
#' `uci_rubbing_damage_perc_seedlings`,
#' `approx_nr_established_ha`, `approx_nr_seedlings_ha`,
#' `approx_rubbing_damage_perc_established`,
#' `approx_rubbing_damage_perc_seedlings`.
#'
#' @examples
#' library(forrescalc)
#' # (add path to your own fieldmap database here)
#' path_to_fieldmapdb <-
#' system.file("example/database/mdb_bosres.sqlite", package = "forrescalc")
#' data_regeneration <- load_data_regeneration(path_to_fieldmapdb)
#' calc_reg_plot(data_regeneration)
#'
#' @export
#'
#' @importFrom dplyr %>% distinct filter group_by mutate n_distinct
#' select summarise ungroup
#' @importFrom rlang .data
#'
calc_reg_plot <- function(data_regeneration) {
check_forrescalc_version_attr(data_regeneration)
no_subcircle <- data_regeneration %>%
filter(
is.na(.data$subcircle),
.data$nr_of_regeneration != 0
) %>%
distinct(.data$plot_id)
if (nrow(no_subcircle) > 0) {
warning(
sprintf(
"Records of dataset data_regeneration with subcircle NA are ignored for this calculation. Such record(s) with nr_of_regeneration different from 0 occur in plot_id %s", #nolint: line_length_linter
paste(no_subcircle$plot_id, collapse = ", ")
)
)
}
unique_plotarea_ha <- data_regeneration %>%
group_by(
.data$plot_id, .data$year, .data$period, .data$subplot_id, .data$subcircle
) %>%
summarise(
n_plotarea_ha = n_distinct(.data$plotarea_ha),
n_plottype = n_distinct(.data$plottype)
) %>%
ungroup() %>%
filter(.data$n_plotarea_ha > 1 | .data$n_plottype > 1)
if (nrow(unique_plotarea_ha) > 0) {
warning(
sprintf(
"Records of dataset data_regeneration from the same plot_id, year, period, subplot_id and subcircle are supposed to have the same plotarea_ha and plottype. This is not the case in plot_id %s. Here the sum of the number of regeneration is divided by the average of the plotarea_ha, without applying any weighing for the area in which the regeneration is observed.", #nolint: line_length_linter
paste(unique_plotarea_ha$plot_id, collapse = ", ")
)
)
}
by_plot <- data_regeneration %>%
mutate(
species_a2 =
ifelse(!is.na(.data$subcircle) & .data$subcircle == "A2",
.data$species, NA),
plotarea_ha = ifelse(.data$plottype == "CA", 0.01, .data$plotarea_ha),
min_number_established =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
.data$min_number_of_regeneration, NA),
max_number_established =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
.data$max_number_of_regeneration, NA),
min_number_seedlings =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
.data$min_number_of_regeneration, NA),
max_number_seedlings =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
.data$max_number_of_regeneration, NA),
approx_nr_established =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
.data$approx_nr_regeneration, NA),
approx_nr_seedlings =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
.data$approx_nr_regeneration, NA),
rubbing_damage_established =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A2",
.data$rubbing_damage_number, NA),
rubbing_damage_seedlings =
ifelse(is.na(.data$subcircle) | .data$subcircle == "A1",
.data$rubbing_damage_number, NA)
) %>%
group_by(
.data$plottype, .data$plot_id, .data$subplot_id, .data$period, .data$year
) %>%
summarise(
number_of_tree_species = n_distinct(.data$species, na.rm = TRUE),
nr_of_tree_species_established =
n_distinct(.data$species_a2, na.rm = TRUE),
plotarea_a1_ha = min(.data$plotarea_ha),
plotarea_a2_ha = max(.data$plotarea_ha),
established_interval =
sum_intervals(
var_min = .data$min_number_established,
var_max = .data$max_number_established,
transformation = "log", na_rm = TRUE
),
seedlings_interval =
sum_intervals(
var_min = .data$min_number_seedlings,
var_max = .data$max_number_seedlings,
transformation = "log", na_rm = TRUE
),
rubbing_damage_nr_established =
sum(.data$rubbing_damage_established, na.rm = TRUE),
not_na_rubbing_established =
sum(!is.na(.data$rubbing_damage_established)),
rubbing_damage_nr_seedlings =
sum(.data$rubbing_damage_seedlings, na.rm = TRUE),
not_na_rubbing_seedlings = sum(!is.na(.data$rubbing_damage_seedlings)),
approx_nr_established =
sum(.data$approx_nr_established, na.rm = TRUE),
approx_nr_seedlings = sum(.data$approx_nr_seedlings, na.rm = TRUE)
) %>%
ungroup() %>%
mutate(
mean_number_established = .data$established_interval$sum,
lci_number_established = .data$established_interval$lci,
uci_number_established = .data$established_interval$uci,
mean_number_seedlings = .data$seedlings_interval$sum,
lci_number_seedlings = .data$seedlings_interval$lci,
uci_number_seedlings = .data$seedlings_interval$uci,
rubbing_damage_nr_established =
ifelse(
.data$not_na_rubbing_established > 0,
.data$rubbing_damage_nr_established,
NA
),
rubbing_damage_nr_seedlings =
ifelse(
.data$not_na_rubbing_seedlings > 0,
.data$rubbing_damage_nr_seedlings,
NA
),
rubbing_damage_nr_established =
ifelse(
is.na(.data$rubbing_damage_nr_established) &
!is.na(.data$rubbing_damage_nr_seedlings),
0,
.data$rubbing_damage_nr_established
),
rubbing_damage_nr_seedlings =
ifelse(
is.na(.data$rubbing_damage_nr_seedlings) &
!is.na(.data$rubbing_damage_nr_established),
0,
.data$rubbing_damage_nr_seedlings
),
number_of_tree_species =
ifelse(.data$number_of_tree_species == 0 &
is.na(.data$mean_number_seedlings),
NA,
.data$number_of_tree_species),
nr_of_tree_species_established =
ifelse(.data$nr_of_tree_species_established == 0 &
is.na(.data$mean_number_seedlings),
NA,
.data$nr_of_tree_species_established),
# to correct approx_nr_xxx = 0 by sum of NAs (see above)
approx_nr_established =
ifelse(.data$approx_nr_established == 0 &
is.na(.data$mean_number_established),
NA,
.data$approx_nr_established),
approx_nr_seedlings =
ifelse(.data$approx_nr_seedlings == 0 &
is.na(.data$mean_number_seedlings),
NA,
.data$approx_nr_seedlings),
# per hectare
approx_nr_established_ha =
.data$approx_nr_established / .data$plotarea_a2_ha,
approx_nr_seedlings_ha =
.data$approx_nr_seedlings / .data$plotarea_a1_ha,
mean_number_established_ha =
.data$mean_number_established / .data$plotarea_a2_ha,
lci_number_established_ha =
.data$lci_number_established / .data$plotarea_a2_ha,
uci_number_established_ha =
.data$uci_number_established / .data$plotarea_a2_ha,
mean_number_seedlings_ha =
.data$mean_number_seedlings / .data$plotarea_a1_ha,
lci_number_seedlings_ha =
.data$lci_number_seedlings / .data$plotarea_a1_ha,
uci_number_seedlings_ha =
.data$uci_number_seedlings / .data$plotarea_a1_ha,
rubbing_damage_nr_established_ha =
.data$rubbing_damage_nr_established / .data$plotarea_a2_ha,
rubbing_damage_nr_seedlings_ha =
.data$rubbing_damage_nr_seedlings / .data$plotarea_a1_ha,
# correction for NA due to plotarea_a1_ha or plotarea_a2_ha = 0
approx_nr_established_ha =
ifelse(is.na(.data$approx_nr_established_ha) &
.data$approx_nr_seedlings_ha > 0
, 0
, .data$approx_nr_established_ha),
approx_nr_seedlings_ha =
ifelse(is.na(.data$approx_nr_seedlings_ha) &
.data$approx_nr_established_ha > 0
, 0
, .data$approx_nr_seedlings_ha),
mean_number_established_ha =
ifelse(is.na(.data$mean_number_established_ha)
& .data$mean_number_seedlings_ha > 0
, 0
, .data$mean_number_established_ha),
lci_number_established_ha =
ifelse(is.na(.data$lci_number_established_ha)
& .data$mean_number_seedlings_ha > 0
, 0
, .data$lci_number_established_ha),
uci_number_established_ha =
ifelse(is.na(.data$uci_number_established_ha)
& .data$mean_number_seedlings_ha > 0
, 0
, .data$uci_number_established_ha),
mean_number_seedlings_ha =
ifelse(is.na(.data$mean_number_seedlings_ha)
& .data$mean_number_established_ha > 0
, 0
, .data$mean_number_seedlings_ha),
lci_number_seedlings_ha =
ifelse(is.na(.data$lci_number_seedlings_ha)
& .data$mean_number_established_ha > 0
, 0
, .data$lci_number_seedlings_ha),
uci_number_seedlings_ha =
ifelse(is.na(.data$uci_number_seedlings_ha)
& .data$mean_number_established_ha > 0
, 0
, .data$uci_number_seedlings_ha),
# percentage rubbing
approx_rubbing_damage_perc_established = pmin(
.data$rubbing_damage_nr_established * 100 /
.data$approx_nr_established, 100),
approx_rubbing_damage_perc_seedlings = pmin(
.data$rubbing_damage_nr_seedlings * 100 /
.data$approx_nr_seedlings, 100),
mean_rubbing_damage_perc_established =
.data$rubbing_damage_nr_established * 100 /
.data$mean_number_established,
lci_rubbing_damage_perc_established =
.data$rubbing_damage_nr_established * 100 /
.data$uci_number_established,
uci_rubbing_damage_perc_established =
.data$rubbing_damage_nr_established * 100 /
.data$lci_number_established,
mean_rubbing_damage_perc_seedlings =
.data$rubbing_damage_nr_seedlings * 100 /
.data$mean_number_seedlings,
lci_rubbing_damage_perc_seedlings =
.data$rubbing_damage_nr_seedlings * 100 /
.data$uci_number_seedlings,
uci_rubbing_damage_perc_seedlings =
.data$rubbing_damage_nr_seedlings * 100 /
.data$lci_number_seedlings,
) %>%
select(
"plottype", "plot_id", "subplot_id", "period", "year",
"number_of_tree_species", "nr_of_tree_species_established",
"approx_nr_established_ha", "approx_nr_seedlings_ha",
"approx_rubbing_damage_perc_established",
"approx_rubbing_damage_perc_seedlings",
"rubbing_damage_nr_established_ha", "rubbing_damage_nr_seedlings_ha",
"mean_number_established_ha",
"lci_number_established_ha", "uci_number_established_ha",
"mean_number_seedlings_ha", "lci_number_seedlings_ha",
"uci_number_seedlings_ha",
"mean_rubbing_damage_perc_established",
"lci_rubbing_damage_perc_established",
"uci_rubbing_damage_perc_established",
"mean_rubbing_damage_perc_seedlings", "lci_rubbing_damage_perc_seedlings",
"uci_rubbing_damage_perc_seedlings"
)
attr(by_plot, "database") <- attr(data_regeneration, "database")
attr(by_plot, "forrescalc") <- attr(data_regeneration, "forrescalc")
return(by_plot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.