context("compare_forecasts_performance")
test_that("check compare_forecasts_performance with different inputs", {
function_input <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company")
) %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA") %>%
create_main_forecasting_table(
seasonal_periods = c(12,3),
min_train_periods = 160,
max_train_periods = Inf
) %>%
head(30) %>%
add_fc_models_to_main_forecasting_table(
periods_ahead = 36,
fc_methods = c("basic")
)
function_output <- function_input %>%
get_forecast_accuracy_overview(
metric = "MAE"
) %>%
compare_forecasts_performance(
fc_models = c("fc_naive_seasonal", "fc_drift_l12m"),
demo_mode = T
)
function_output <- suppressWarnings(ggplot2::last_plot()) # Because its easier to test a ggplot2 object than a plotly object
expect_is(function_output, c("gg", "ggplot"))
expect_equal(as.character(function_output$mapping), c("~fc_periods_ahead", "~metric", "~fc_model", "~fc_model"))
expect_equal(function_output$labels$x, "Forecast horizon")
expect_equal(function_output$labels$y, "metric")
expect_equal(function_output$labels$colour, "fc_model")
expect_equal(function_output$labels$fill, "fc_model")
expect_equal(function_output$labels$ymin, "lower_bound")
expect_equal(function_output$labels$ymax, "upper_bound")
expect_equal(function_output$labels$text, "paste0(\"Model: \", fc_model, \"<br>Forecast horizon: \", fc_periods_ahead, ...")
expect_is(function_output$data, c("tbl_df", "tbl", "data.frame"))
expect_equal(nrow(function_output$data), 62)
expect_equal(ncol(function_output$data), 7)
expect_equal(colnames(function_output$data), c("grouping", "fc_model", "fc_periods_ahead", "n_data_point", "lower_bound", "metric", "upper_bound"))
expect_is(function_output$data$grouping, "character")
expect_is(function_output$data$fc_model, "character")
expect_is(function_output$data$fc_periods_ahead, "numeric")
expect_is(function_output$data$n_data_point, "integer")
expect_is(function_output$data$lower_bound, "numeric")
expect_is(function_output$data$metric, "numeric")
expect_is(function_output$data$upper_bound, "numeric")
expect_equal(unique(function_output$data$grouping), c("state = New York & oil_company = CompanyA"))
expect_equal(sort(function_output$data$fc_model), c(
rep("fc_drift_l12m", 31),
rep("fc_naive_seasonal", 31)
))
expect_equal(unique(function_output$data$fc_periods_ahead), 1:31)
expect_equal(unique(function_output$data$n_data_point), 30:1)
expect_equal(round(min(function_output$data$lower_bound),2), 0.00)
expect_equal(round(max(function_output$data$lower_bound),2), 0.75)
expect_equal(round(min(function_output$data$metric),2), 0.37)
expect_equal(round(max(function_output$data$metric),2), 1.07)
expect_equal(round(min(function_output$data$upper_bound),2), 0.73)
expect_equal(round(max(function_output$data$upper_bound),2), 2.61)
function_output <- function_input %>%
get_forecast_accuracy_overview(
metric = "MAE"
) %>%
compare_forecasts_performance(
fc_models = "fc_mean_l6m",
demo_mode = F
)
function_output <- suppressWarnings(ggplot2::last_plot()) # Because its easier to test a ggplot2 object than a plotly object
expect_is(function_output, c("gg", "ggplot"))
expect_equal(as.character(function_output$mapping), c("~fc_periods_ahead", "~metric", "~fc_model", "~fc_model"))
expect_equal(function_output$labels$x, "Forecast horizon")
expect_equal(function_output$labels$y, "metric")
expect_equal(function_output$labels$colour, "fc_model")
expect_equal(function_output$labels$fill, "fc_model")
expect_equal(function_output$labels$ymin, "lower_bound")
expect_equal(function_output$labels$ymax, "upper_bound")
expect_equal(function_output$labels$text, "paste0(\"Model: \", fc_model, \"<br>Forecast horizon: \", fc_periods_ahead, ...")
expect_is(function_output$data, c("tbl_df", "tbl", "data.frame"))
expect_equal(nrow(function_output$data), 31)
expect_equal(ncol(function_output$data), 7)
expect_equal(colnames(function_output$data), c("grouping", "fc_model", "fc_periods_ahead", "n_data_point", "lower_bound", "metric", "upper_bound"))
expect_is(function_output$data$grouping, "character")
expect_is(function_output$data$fc_model, "character")
expect_is(function_output$data$fc_periods_ahead, "numeric")
expect_is(function_output$data$n_data_point, "integer")
expect_is(function_output$data$lower_bound, "numeric")
expect_is(function_output$data$metric, "numeric")
expect_is(function_output$data$upper_bound, "numeric")
expect_equal(unique(function_output$data$grouping), c("state = New York & oil_company = CompanyA"))
expect_equal(function_output$data$fc_model, rep("fc_mean_l6m", 31))
expect_equal(unique(function_output$data$fc_periods_ahead), 1:31)
expect_equal(unique(function_output$data$n_data_point), 30:1)
expect_equal(round(min(function_output$data$lower_bound),2), 0.00)
expect_equal(round(max(function_output$data$lower_bound),2), 0.67)
expect_equal(round(min(function_output$data$metric),2), 0.34)
expect_equal(round(max(function_output$data$metric),2), 0.88)
expect_equal(round(min(function_output$data$upper_bound),2), 0.67)
expect_equal(round(max(function_output$data$upper_bound),2), 2.45)
function_output <- function_input %>%
get_forecast_accuracy_overview(
metric = "MASE"
) %>%
compare_forecasts_performance(
fc_models = c(
"fc_drift_l12m", "fc_drift_l3m", "fc_drift_l6m", "fc_mean_l12m",
"fc_mean_l3m", "fc_mean_l6m", "fc_naive", "fc_naive_seasonal"
),
demo_mode = F
)
function_output <- suppressWarnings(ggplot2::last_plot()) # Because its easier to test a ggplot2 object than a plotly object
expect_is(function_output, c("gg", "ggplot"))
expect_equal(as.character(function_output$mapping), c("~fc_periods_ahead", "~metric", "~fc_model", "~fc_model"))
expect_equal(function_output$labels$x, "Forecast horizon")
expect_equal(function_output$labels$y, "metric")
expect_equal(function_output$labels$colour, "fc_model")
expect_equal(function_output$labels$fill, "fc_model")
expect_equal(function_output$labels$ymin, "lower_bound")
expect_equal(function_output$labels$ymax, "upper_bound")
expect_equal(function_output$labels$text, "paste0(\"Model: \", fc_model, \"<br>Forecast horizon: \", fc_periods_ahead, ...")
expect_is(function_output$data, c("tbl_df", "tbl", "data.frame"))
expect_equal(nrow(function_output$data), 248)
expect_equal(ncol(function_output$data), 7)
expect_equal(colnames(function_output$data), c("grouping", "fc_model", "fc_periods_ahead", "n_data_point", "lower_bound", "metric", "upper_bound"))
expect_is(function_output$data$grouping, "character")
expect_is(function_output$data$fc_model, "character")
expect_is(function_output$data$fc_periods_ahead, "numeric")
expect_is(function_output$data$n_data_point, "integer")
expect_is(function_output$data$lower_bound, "numeric")
expect_is(function_output$data$metric, "numeric")
expect_is(function_output$data$upper_bound, "numeric")
expect_equal(unique(function_output$data$grouping), c("state = New York & oil_company = CompanyA"))
expect_equal(sort(function_output$data$fc_model), c(
rep("fc_drift_l12m", 31),
rep("fc_drift_l3m", 31),
rep("fc_drift_l6m", 31),
rep("fc_mean_l12m", 31),
rep("fc_mean_l3m", 31),
rep("fc_mean_l6m", 31),
rep("fc_naive", 31),
rep("fc_naive_seasonal", 31)
))
expect_equal(unique(function_output$data$fc_periods_ahead), 1:31)
expect_equal(unique(function_output$data$n_data_point), 30:1)
expect_equal(round(min(function_output$data$lower_bound),2), 0.00)
expect_equal(round(max(function_output$data$lower_bound),2), 3.54)
expect_equal(round(min(function_output$data$metric),2), 1.32)
expect_equal(round(max(function_output$data$metric),2), 9.79)
expect_equal(round(min(function_output$data$upper_bound),2), 1.93)
expect_equal(round(max(function_output$data$upper_bound),2), 32.14)
})
test_that("check compare_forecasts_performance when invalid inputs are used", {
function_input <- tstools::initialize_ts_forecast_data(
data = dummy_gasprice,
date_col = "year_month",
col_of_interest = "gasprice",
group_cols = c("state", "oil_company")
) %>%
create_main_forecasting_table(
seasonal_periods = c(12,3),
min_train_periods = 190,
max_train_periods = Inf
) %>%
add_fc_models_to_main_forecasting_table(
periods_ahead = 36,
fc_methods = c("basic")
) %>%
get_forecast_accuracy_overview()
expect_error(
compare_forecasts_performance(
accuracy_overview = "potato"
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = dummy_gasprice
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input %>%
dplyr::select(-mean)
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input %>%
dplyr::filter(FALSE),
fc_model = "fc_mean_l3m"
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input,
fc_model = "fc_mean_l3m"
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA"),
fc_model = ""
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA"),
fc_model = NULL
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA"),
fc_models = c("fc_mean_l3m", "42")
)
)
expect_error(
compare_forecasts_performance(
accuracy_overview = function_input %>%
dplyr::filter(grouping == "state = New York & oil_company = CompanyA"),
fc_models = 42
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.