###################################################################
# Run the `airGR::RunModel_Lag` example in the GRiwrm fashion way #
# Simulation of a reservoir with a purpose of low-flow mitigation #
###################################################################
## ---- preparation of the InputsModel object
## loading package and catchment data
library(airGRiwrm)
data(L0123001)
## ---- specifications of the reservoir
## the reservoir withdraws 1 m3/s when it's possible considering the flow observed in the basin
Qupstream <- matrix(-sapply(BasinObs$Qls / 1000 - 1, function(x) {
min(1, max(0, x, na.rm = TRUE))
}), ncol = 1)
## except between July and September when the reservoir releases 3 m3/s for low-flow mitigation
month <- as.numeric(format(BasinObs$DatesR, "%m"))
Qupstream[month >= 7 & month <= 9] <- 3
Qupstream <- Qupstream * 86400 ## Conversion in m3/day
## the reservoir is not an upstream subcachment: its areas is NA
BasinAreas <- c(NA, BasinInfo$BasinArea)
## delay time between the reservoir and the catchment outlet is 2 days and the distance is 150 km
LengthHydro <- 150
## with a delay of 2 days for 150 km, the flow velocity is 75 km per day
Velocity <- (LengthHydro * 1e3 / 2) / (24 * 60 * 60) ## Conversion km/day -> m/s
# This example is a network of 2 nodes which can be describe like this:
db <- data.frame(id = c("Reservoir", "GaugingDown"),
length = c(LengthHydro, NA),
down = c("GaugingDown", NA),
area = c(NA, BasinInfo$BasinArea),
model = c(NA, "RunModel_GR4J"),
stringsAsFactors = FALSE)
# Create GRiwrm object from the data.frame
griwrm <- CreateGRiwrm(db)
\dontrun{
plot(griwrm)
}
# Formatting observations for the hydrological models
# Each input data should be a matrix or a data.frame with the good id in the name of the column
Precip <- matrix(BasinObs$P, ncol = 1)
colnames(Precip) <- "GaugingDown"
PotEvap <- matrix(BasinObs$E, ncol = 1)
colnames(PotEvap) <- "GaugingDown"
# Observed flows contain flows that are directly injected in the model
Qinf = matrix(Qupstream, ncol = 1)
colnames(Qinf) <- "Reservoir"
# Creation of the GRiwrmInputsModel object (= a named list of InputsModel objects)
InputsModels <- CreateInputsModel(griwrm,
DatesR = BasinObs$DatesR,
Precip = Precip,
PotEvap = PotEvap,
Qinf = Qinf)
str(InputsModels)
## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"),
which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1999-12-31"))
# Creation of the GRiwmRunOptions object
RunOptions <- CreateRunOptions(InputsModels,
IndPeriod_Run = Ind_Run)
str(RunOptions)
# Parameters of the SD models should be encapsulated in a named list
ParamGR4J <- c(X1 = 257.238, X2 = 1.012, X3 = 88.235, X4 = 2.208)
Param <- list(`GaugingDown` = c(Velocity, ParamGR4J))
# RunModel for the whole network
OutputsModels <- RunModel(InputsModels,
RunOptions = RunOptions,
Param = Param)
str(OutputsModels)
# Compare regimes of the simulation with reservoir and observation of natural flow
plot(OutputsModels,
data.frame(GaugingDown = BasinObs$Qmm[Ind_Run]),
which = "Regime")
# Plot together simulated flows (m3/s) of the reservoir and the gauging station
plot(attr(OutputsModels, "Qm3s"))
########################################################
# Run the Severn example provided with this package #
# A natural catchment composed with 6 gauging stations #
########################################################
data(Severn)
nodes <- Severn$BasinsInfo
nodes$model <- "RunModel_GR4J"
# Mismatch column names are renamed to stick with GRiwrm requirements
rename_columns <- list(id = "gauge_id",
down = "downstream_id",
length = "distance_downstream")
g_severn <- CreateGRiwrm(nodes, rename_columns)
# Network diagram with upstream basin nodes in blue, intermediate sub-basin in green
\dontrun{
plot(g_severn)
}
# Format CAMEL-GB meteorological dataset for airGRiwrm inputs
BasinsObs <- Severn$BasinsObs
DatesR <- BasinsObs[[1]]$DatesR
PrecipTot <- cbind(sapply(BasinsObs, function(x) {x$precipitation}))
PotEvapTot <- cbind(sapply(BasinsObs, function(x) {x$peti}))
# Precipitation and Potential Evaporation are related to the whole catchment
# at each gauging station. We need to compute them for intermediate catchments
# for use in a semi-distributed model
Precip <- ConvertMeteoSD(g_severn, PrecipTot)
PotEvap <- ConvertMeteoSD(g_severn, PotEvapTot)
# CreateInputsModel object
IM_severn <- CreateInputsModel(g_severn, DatesR, Precip, PotEvap)
# GRiwrmRunOptions object
# Run period is set aside the one-year warm-up period
IndPeriod_Run <- seq(
which(IM_severn[[1]]$DatesR == (IM_severn[[1]]$DatesR[1] + 365*24*60*60)),
length(IM_severn[[1]]$DatesR) # Until the end of the time series
)
IndPeriod_WarmUp <- seq(1, IndPeriod_Run[1] - 1)
RO_severn <- CreateRunOptions(
IM_severn,
IndPeriod_WarmUp = IndPeriod_WarmUp,
IndPeriod_Run = IndPeriod_Run
)
# Load parameters of the model from Calibration in vignette V02
P_severn <- readRDS(system.file("vignettes", "ParamV02.RDS", package = "airGRiwrm"))
# Run the simulation
OM_severn <- RunModel(IM_severn,
RunOptions = RO_severn,
Param = P_severn)
# Plot results of simulated flows in m3/s
Qm3s <- attr(OM_severn, "Qm3s")
plot(Qm3s[1:150, ])
##################################################################
# An example of water withdrawal for irrigation with restriction #
# modeled with a Diversion node on the Severn river #
##################################################################
# A diversion is added at gauging station "54001"
nodes_div <- nodes[, c("gauge_id", "downstream_id", "distance_downstream", "area", "model")]
names(nodes_div) <- c("id", "down", "length", "area", "model")
nodes_div <- rbind(nodes_div,
data.frame(id = "54001", # location of the diversion
down = NA, # the abstracted flow goes outside
length = NA, # down=NA, so length=NA
area = NA, # no area, diverted flow is in m3/day
model = "Diversion"))
g_div <- CreateGRiwrm(nodes_div)
# The node "54001" is surrounded in red to show the diverted node
\dontrun{
plot(g_div)
}
# Computation of the irrigation withdraw objective
irrigMonthlyPlanning <- c(0.0, 0.0, 1.2, 2.4, 3.2, 3.6, 3.6, 2.8, 1.8, 0.0, 0.0, 0.0)
names(irrigMonthlyPlanning) <- month.abb
irrigMonthlyPlanning
DatesR_month <- as.numeric(format(DatesR, "%m"))
# Withdrawn flow calculated for each day is negative
Qirrig <- matrix(-irrigMonthlyPlanning[DatesR_month] * 86400, ncol = 1)
colnames(Qirrig) <- "54001"
# Minimum flow to remain downstream the diversion is 12 m3/s
Qmin <- matrix(12 * 86400, nrow = length(DatesR), ncol = 1)
colnames(Qmin) = "54001"
# Creation of GRimwrInputsModel object
IM_div <- CreateInputsModel(g_div, DatesR, Precip, PotEvap, Qinf = Qirrig, Qmin = Qmin)
# RunOptions and parameters are unchanged, we can directly run the simulation
OM_div <- RunModel(IM_div,
RunOptions = RO_severn,
Param = P_severn)
# Retrieve diverted flow at "54001" and convert it from m3/day to m3/s
Qdiv_m3s <- OM_div$`54001`$Qdiv_m3 / 86400
# Plot the diverted flow for the year 2003
Ind_Plot <- which(
OM_div[[1]]$DatesR >= as.POSIXct("2003-01-01", tz = "UTC") &
OM_div[[1]]$DatesR <= as.POSIXct("2003-12-31", tz = "UTC")
)
dfQdiv <- as.Qm3s(DatesR = OM_div[[1]]$DatesR[Ind_Plot],
Diverted_flow = Qdiv_m3s[Ind_Plot])
oldpar <- par(mfrow=c(2,1), mar = c(2.5,4,1,1))
plot(dfQdiv)
# Plot natural and influenced flow at station "54001"
df54001 <- cbind(attr(OM_div, "Qm3s")[Ind_Plot, c("DatesR", "54001")],
attr(OM_severn, "Qm3s")[Ind_Plot, "54001"])
names(df54001) <- c("DatesR", "54001 with irrigation", "54001 natural flow")
df54001 <- as.Qm3s(df54001)
plot(df54001, ylim = c(0,70))
abline(h = 12, col = "green", lty = "dotted")
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.