hessian2stat | R Documentation |
The functions calculate statistical characteristics based on normal distribution or transformed normal distribution.
hessian2stat(hessian, optim, transform="", level=0.95, ...) parset2stat(parset, transform="", level=0.95, norm.test=shapiro.test, ...)
hessian |
Hessian matrix of second derivatives (-2logL vs parameters). It must be positive-definite. |
optim |
Optimal values of parameters (best-fit values). |
transform |
String vector for what distribution is used on parameter. For default all parameters are set to normal distribution. |
level |
confidence level for calculation of confidence intervals. |
... |
other arguments passed to |
parset |
data.frame with parameter set (mandatory for |
norm.test |
function to perform normality test |
The output for this function is covariance matrix
calculated based on assymptotic approach, and it takes into account the transformation of parameter space.
### calculate statistical characteristics based on calculated hessian, see 'example4.slv' from DBSolve manual ## Not run: example4_parset_bs<-read.delim("example4_hessian.txt") # read hessian from file optimal<-c(kcat=7.130016e-01, Vd=5.205980e+00, Km=5.240306e+00, kabs=2.014304e+00) hessian2stat(hessian=as.matrix(example4_hessian), optim=optimal, transform="log") ### calculate statistical characteristics based on parameter set, see 'example4.slv' from DBSolve manual ## Not run: example4_parset_bs<-read.delim("example4_parset_bs.txt") # read hessian from file parset2stat(parset=example4_parset_bs[,1:4])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.