| parsetgen | R Documentation |
The function parsetgen generates random dataset.
The function parsetgen.cond add to the dataset from parsetgen conditions columns and nos column
parsetgen(cov, mu, transform="", samples=1024) parsetgen.cond(parset, cond=data.frame(), max.samples=nrow(parset), uniq.nos=FALSE)
cov |
covariance matrix with dimension nxn and whose element in i,j positions is the covariance between the i and j elements. |
mu |
named vector length of n with named parameters and their expectations |
transform |
character vector containing the distribution for each parameter. It can be "" for normal distribution and "log" for log-normal distribution |
samples |
number of the samples that we want to get in the ouput dataset (1024 as default) |
parset |
output data.frame from parsetgen function or users data.frame |
cond |
conditional data.frame. If empty, the result of parsetgen.cond is input data.frame with nos column |
max.samples |
number of resulted samples for each condition. If nrow(parset)<max.samples, that provide an error. If nrow(parset)>max.samples, that cuts the data frame by number of samples |
uniq.nos |
number of unique parameter set. If FALSE, then nos will be with repeating, and if TRUE - nos will have unique number. |
The output is data.frame with the columns named as names in your expect vector, and for parsetgen.cond it will be data.frame with the "nos" column, and names(parset) columns and names(cond) column
parsetgen function does not provide nos column. If you need one, use
out<-parsetgen() followed by .
final<-parstgen.cond(out)
rmvnorm
### create parameter set for Monte-Carlo simulation using covariance matrix (example4)
example4_parset<-parsetgen(example4_stat$muCov, example4_stat$mu, example4_stat$transform)
example4_parset.cond<-parsetgen.cond(
example4_parset,
cond=data.frame(Dose=c(1,5,10,1,5,10), T=c(12,12,12,24,24,24))
)
write.delim(example4_parset.cond, "example4_parset.cond.txt")
### create parameter set for Monte-Carlo simulation using parameter set based on bootstrapping(example4)
example4_parset_bs.cond<-parsetgen.cond(
example4_parset_bs[,c(1,2,3,4,6)],
cond=data.frame(Dose=c(1,5,10,1,5,10), T=c(12,12,12,24,24,24))
)
write.delim(example4_parset_bs.cond, "example4_parset_bs.cond.txt")
### Making some parameter set with three expectation and cov as vector
expect<-c(kcat=0.5, Vd=23.4, Km=12.4) #making expect vector
cov<-c(23.5, 37.9, 23.5) #making vector for coviance matrix
transform<-c("log", "", "log") #the transform vector with distributions
output<-parsetgen(cov, expect, transform)
#Making some dataset,with three expectation and cov as vector
expect<-c(kcat=0.5,Vd=23.4,Km=12.4) #making expect vector
cov<-matrix(c(23.5,0,1, 0,37.9,0, 1,0,23.5), ncol=3) #coviance matrix
transform<-c("log","","log") #the transform vector with distributions
output<-parsetgen(cov, expect, transform)
#Using the parsetgen.cond function. Suppose we have output from parsetgen function
cond<-data.frame(cond1=c(1,2.5,1), cond2=c(0,0,1), cond3=c(0,0,0))
output1<-parsetgen.cond(output, cond=cond, max.samples=1024,uniq.nos=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.