tests_joao/issue_17.R

#' @title Convert GTFS to GPS given a spatial resolution
#' @description Convert GTFS data to GPS format by sampling points using a
#' spatial resolution. This function creates additional points in order to
#' guarantee that two points in a same trip will have at most a given
#' distance, indicated as a spatial resolution.
#' @param gtfszip A path to a GTFS file to be converted to GPS.
#' @param spatial_resolution The spatial resolution in meters. Default is 15m.
#' @param week_days Use only the week days? Default is TRUE.
#' @export
#gtfs2gps_dt_parallel <- function(gtfszip, spatial_resolution = 15, week_days = TRUE){
###### PART 1. Load and prepare data inputs ------------------------------------
rm(list=ls())
gc(reset = TRUE)

gtfszip <- "inst/extdata/saopaulo.zip"
# Read GTFS data
source("R/read_gtfs.R")
gtfs_data <- read_gtfs(gtfszip = gtfszip)

# Filter trips 
#  if(week_days == TRUE){
#    gtfs_data <- filter_week_days(gtfs_data) 
#  }

# Convert all shapes into sf object
source("R/gtfs_as_sf.R");library(dplyr)
shapes_sf <- gtfs_shapes_as_sf(gtfs_data)

# all shape ids
all_shapeids <- unique(shapes_sf$shape_id)

# Progress bar start
total <- length(all_shapeids)
#  pb <- utils::txtProgressBar(min = 0, max = total, style = 3)

###### PART 2.1 Core function to work on each Shape id ------------------------------------
#corefun <- function(shapeid){
# #get a list of all trip ids
# all_shapeids <- unique(shapes_sf$shape_id)
# all_shapeids <- all_shapeids[1:100]
shapeid <- all_shapeids[6]

# Progress bar input
i <- match(c(shapeid), all_shapeids)
# Progress bar update
#    utils::setTxtProgressBar(pb, i)

# Select corresponding route, route type, stops and shape of that trip

# Skip shape_id IF there is no route_id associated with that shape_id
routeid <- gtfs_data$trips[shape_id == shapeid]$route_id[1]

if(is.na(routeid)){
  return(NULL)
}else{
  routeid <- gtfs_data$trips[shape_id == shapeid]$route_id[1]
  routetype <- gtfs_data$routes[route_id == routeid]$route_type
  
  # trips
  trips_temp <- gtfs_data$trips[shape_id == shapeid & route_id == routeid, ]
  all_tripids <- unique(trips_temp$trip_id)
  
  # stops sequence with lat long
  # each shape_id only have one stop sequence
  stops_seq <- gtfs_data$stop_times[trip_id == all_tripids[1], .(stop_id, stop_sequence)] # get stop sequence
  stops_seq[gtfs_data$stops, on = "stop_id", c('stop_lat', 'stop_lon') := list(i.stop_lat, i.stop_lon)] # add lat long info
  
  # convert stops to sf
  stops_sf <- sf::st_as_sf(stops_seq, coords = c('stop_lon', 'stop_lat'), agr = "identity")
  
  # shape
  shape_sf_temp <- subset(shapes_sf, shape_id == shapeid)
  
  # Use point interpolation to get shape with higher spatial resolution
  shp_length <- shape_sf_temp %>% sf::st_sf() %>% sf::st_set_crs(4326) %>% sf::st_length() %>% as.numeric()
  
  #sampling <- ceiling(shp_length / spatial_resolution)
  spatial_resolution <- 15/1000
  # ERROR? shape_sf_temp <- sf::st_line_sample(shape_sf_temp, n = sampling ) %>% sf::st_cast("LINESTRING")
  shape_sf_temp2 <- sf::st_segmentize(shape_sf_temp, units::set_units(spatial_resolution, "km") ) %>% sf::st_cast("LINESTRING")
  
  # get shape points in high resolution
  new_shape <- sf::st_cast(shape_sf_temp2, "POINT", warn = FALSE) %>% sf::st_sf()
  
  # snap stops to route shape
  sf::st_crs(stops_sf) <- sf::st_crs(new_shape)
  
  Rcpp::sourceCpp('src/snap_points.cpp')
  stops_snapped_sf <- cpp_snap_points(stops_sf %>% sf::st_coordinates(), new_shape %>% sf::st_coordinates())
  
  # update stops_seq lat long with snapped coordinates
  stops_seq$stop_lon <- stops_snapped_sf$x
  stops_seq$stop_lat <- stops_snapped_sf$y
  
  ### Start building new stop_times.txt file
  
  # get shape points in high resolution
  new_stoptimes <- data.table::data.table(shape_id = new_shape$shape_id[1],
                                          id = 1:nrow(new_shape),
                                          route_type = routetype,
                                          shape_pt_lon = sf::st_coordinates(new_shape)[,1],
                                          shape_pt_lat = sf::st_coordinates(new_shape)[,2])
  print("oi")
  break()
  # Add stops to shape
  new_stoptimes[stops_seq, on = c(shape_pt_lat="stop_lat"), c('stop_id', 'stop_sequence') := list(i.stop_id, i.stop_sequence) ]
  #
  # solution jp
  #
  a <- st_point(as.numeric(new_stoptimes[1,c("shape_pt_lat","shape_pt_lon")]))
  b <- st_point(as.numeric(stops_seq[,c("stop_lat","stop_lon")]))
  c <- st_multipoint(as.matrix(stops_seq[,c("stop_lat","stop_lon")]))
  #
  # solution pedro
  #
  max_stoptimes <- dim(new_stoptimes)[1]
  max_stops_seq <- dim(stops_seq)[1]
  j <- 1
  
  for(i in 1:max_stoptimes){
    if(all.equal(new_stoptimes$shape_pt_lon[i], stops_seq$stop_lon[j], 0.000001) == TRUE &&
       all.equal(new_stoptimes$shape_pt_lat[i], stops_seq$stop_lat[j], 0.000001) == TRUE){
      new_stoptimes[i, "stop_id"] <- stops_seq[j, "stop_id"]
      new_stoptimes[i, "stop_sequence"] <- stops_seq[j, "stop_sequence"]
      j <- j + 1
    }
  }
  
  ###check if everything is Ok
  ##kept path
  # a <- new_stoptimes[, .(shape_pt_lon, shape_pt_lat)] %>% as.matrix %>% sf::st_linestring()
  # plot(a)
  ## stop sequence is Ok
  # a <- na.omit(new_stoptimes)
  # plot(a$stop_sequence)
  # plot(stops_seq$stop_sequence)
  # a$stop_sequence == stops_seq$stop_sequence
  
  # calculate Distance between successive points
  # using C++ : Source: https://stackoverflow.com/questions/36817423/how-to-efficiently-calculate-distance-between-pair-of-coordinates-using-data-tab?noredirect=1&lq=1
  Rcpp::sourceCpp('src/distance_calcs.cpp')
  new_stoptimes[, dist := rcpp_distance_haversine(shape_pt_lat, shape_pt_lon, data.table::shift(shape_pt_lat, type="lead"), data.table::shift(shape_pt_lon, type="lead"), tolerance = 10000000000.0)]
  break()
  ###### PART 2.2 Function recalculate new stop_times for each trip id of each Shape id ------------------------------------
  
  ### Function to generate the GPS-like data set of each trip_id
  #update_newstoptimes <- function(tripid){
  tripid <- all_tripids[1]
  
  # stoptimes
  stoptimes_temp <- gtfs_data$stop_times[trip_id == tripid]
  
  # Get trip duration and length
  trip_duration <- stoptimes_temp[, difftime(departure_time[.N], departure_time[1L], units = "hours") ]
  trip_duration <- as.numeric(trip_duration)
  
  # length of the trip (in KM)
  trip_dist <- shp_length / 1000 # in Km
  trip_speed <- trip_dist / trip_duration
  
  # Add departure_time
  new_stoptimes[stoptimes_temp, on = 'stop_id', 'departure_time' := i.departure_time]
  
  # add trip_id
  new_stoptimes[, trip_id := tripid]
  
  # reorder columns
  data.table::setcolorder(new_stoptimes, c("shape_id","trip_id", "route_type", "id", "shape_pt_lon", "shape_pt_lat", "departure_time", "stop_id", "stop_sequence", "dist"))
  # add cummulative distance
  new_stoptimes[, cumdist := cumsum(dist)]
  
  # find position of first non-missing departure_time
  pos_non_NA <- new_stoptimes$departure_time
  pos_non_NA <- Position(function(pos_non_NA) !is.na(pos_non_NA), pos_non_NA)
  
  pos_non_NA <- which(!is.na(new_stoptimes$departure_time))[1]
  # distance from trip start to 1st stop
  dist_1st <- new_stoptimes[id == pos_non_NA]$cumdist / 1000 # in Km
  # get the depart time from 1st stop
  departtime_1st <- new_stoptimes[id == pos_non_NA]$departure_time
  departtime_1st <- departtime_1st - (dist_1st / trip_speed * 60) # time in seconds
  
  # Determine the start time of the trip (time stamp the 1st GPS point of the trip)
  class(new_stoptimes$departure_time)
  suppressWarnings(new_stoptimes[id == 1, departure_time := data.table::as.ITime(departtime_1st)])
  
  # recalculate time stamps
  new_stoptimes[, departure_time := data.table::as.ITime(departure_time[1L] + (cumdist / trip_speed * 60))]
  
  return(new_stoptimes)
  #}
  
  # apply 2.2 function to all trip ids of a certain shape id
  partial_stoptimes <- lapply(X = all_tripids, FUN = update_newstoptimes) %>% data.table::rbindlist()
  return(partial_stoptimes)
  
  # 2.2 test in parallel
  #output2.2 <- future.apply::future_lapply(X = all_tripids, FUN=update_newstoptimes) %>% data.table::rbindlist()
}
#}

###### PART 3. Apply Core function in parallel to all shape ids------------------------------------

# Parallel processing using future.apply
future::plan(future::multiprocess)
output <- future.apply::future_lapply(X = all_shapeids, FUN = corefun, future.packages = c('data.table', 'sf', 'Rcpp', 'magrittr')) %>% data.table::rbindlist()
future::plan(future::sequential)
### Single core
# output <- lapply(X = all_shapeids, FUN=corefun) %>% data.table::rbindlist()

# closing progress bar
#  close(pb)
return(output)
#}
ipeaGIT/gtfs2gps documentation built on Oct. 13, 2024, 6:34 p.m.