GP-class: Gaussian Process

Description Usage Slots References See Also

Description

Implementation of the Gaussian Process model for 3D spatial interpolation.

Usage

1
2
3
GP(data, model, value, mean = NULL, trend = NULL,
  force.interp = numeric(), reg.v = 1e-09, tangents = NULL,
  reg.t = 1e-12, nugget.t = 0)

Slots

data

A spatial3DDataFrame object containing the necessary data.

tangents

A directions3DDataFrame object containing structural geology data. Most likely generated with the GetLineDirections() or GetPlaneDirections() method.

model

The covariance model. A list containing one or more covarianceStructure3D objects.

mean

The global mean. Irrelevant if a trend is used.

trend

The model's trend component. A formula in character format.

beta

The trend coefficients.

likelihood

The model's log-likelihood given the data.

pre_comp

A list containing pre-computed values to speed up predictions.

References

Rasmussen CE, Williams CKI. Gaussian processes for machine learning. Cambridge, Massachusetts: MIT Press; 2006. doi:10.1142/S0129065704001899.

See Also

GP-init, SPGP-class, GP_geomod-class


italo-goncalves/geomod3D documentation built on May 24, 2019, 2:49 p.m.