Description Usage Slots References See Also
Implementation of the Sparse Gaussian Process model for 3D spatial
interpolation. Extends the GP class.
1 2 3 |
dataA spatial3DDataFrame object containing the necessary data.
tangentsA directions3DDataFrame object containing structural
geology data. Most likely generated with the GetLineDirections()
or GetPlaneDirections() method.
modelThe covariance model. A covarianceModel3D object.
meanThe global mean. Irrelevant if a trend is used.
trendThe model's trend component. A formula in character format.
betaThe trend coefficients.
likelihoodThe model's log-likelihood given the data.
pre_compA list containing pre-computed values to speed up
predictions.
pseudo_inputsA spatial3DDataFrame object containing the coordinates
of the pseudo-inputs.
pseudo_tangentsA directions3DDataFrame object containing the coordinates
of the pseudo-inputs for directional data.
variationalA logical indicating if the model uses the variational approach.
Snelson, E., Ghahramani, Z., 2006. Sparse Gaussian Processes using Pseudo-inputs. Adv. Neural Inf. Process. Syst. 18 1257<e2><80><93>1264.
Titsias, M., 2009. Variational Learning of Inducing Variables in Sparse Gaussian Processes. Aistats 5, 567<e2><80><93>574.
Bauer, M.S., van der Wilk, M., Rasmussen, C.E., 2016. Understanding Probabilistic Sparse Gaussian Process Approximations. Adv. Neural Inf. Process. Syst. 29.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.