preprocess: Preprocess input data with Principal Component Analysis...

View source: R/preprocess.R

preprocessR Documentation

Preprocess input data with Principal Component Analysis method (PCA)

Description

Preprocess input data with Principal Component Analysis method (PCA)

Usage

preprocess(
  data,
  pheno = NULL,
  method = "pca",
  reg.family = "binomial",
  scaleData = FALSE,
  cumvar.threshold = 75,
  out.type = "D",
  penalty = 0.001,
  verbose = FALSE
)

Arguments

data

An input matrix with values of independent variables (predictors).

pheno

A phenotype - column-vector, needed for LASSO/ridge and NULL by default.

method

A dimensionality reduction method. Default: pca.

reg.family

A regression family. Default: "binomial".

scaleData

A logical variable, indicates wheither or not scaling should be performed. Default: FALSE.

cumvar.threshold

A threshold value for explained variance. Default: 75

out.type

An output (phenotype) type. Default: "D"

penalty

Value of penalty parameter for LASSO/ridge regression. Default: 0.001

verbose

Indicates verbosing output. Default: FALSE.

Value

A list of one: "S" - a data frame of predictor values.


izhbannikov/rqt documentation built on Aug. 2, 2024, 1:39 p.m.