geneTest | R Documentation |
This function performs a gene-level test based on combined effect sizes.
geneTest This function performs a gene-level test based on combined effect sizes.
geneTest(obj, ...)
## S4 method for signature 'rqt'
geneTest(
obj,
perm = 0,
STT = 0.2,
weight = FALSE,
cumvar.threshold = 75,
out.type = "D",
method = "pca",
scaleData = FALSE,
asym.pval = FALSE,
penalty = 0.001,
verbose = FALSE
)
obj |
Object of class |
... |
Additional parameters to pass to the function |
perm |
Integer indicating the number of permutations to compute p-values. Default: 0. |
STT |
Numeric indicating soft truncation threshold (STT) to convert to gamma parameter (must be <= 0.4). Needed for an optimal parameter a in Gamma-distribution. Default: 0.2. See, for example, Fridley, et al 2013: "Soft truncation thresholding for gene set analysis of RNA-seq data: Application to a vaccine study". |
weight |
Logical value. Indicates using weights (see Lee et al 2016). Default: FALSE. |
cumvar.threshold |
Numeric value indicating the explained variance threshold for PCA-like methods. Default: 75 |
out.type |
Character, indicating a type of phenotype.
Possible values: |
method |
Method used to reduce multicollinerity and account for LD.
Default: |
scaleData |
A logic parameter (TRUE/FALSE) indicating scaling of the genotype dataset. |
asym.pval |
Indicates Monte Carlo approximation for p-values. Default: FALSE. |
penalty |
A value of |
verbose |
Indicates verbosing output. Default: FALSE. |
Updated rqt object with result slot
Object of class rqt
data <- data.matrix(read.table(system.file("extdata/test.bin1.dat",
package="rqt"), header=TRUE))
pheno <- data[,1]
geno <- data[, 2:dim(data)[2]]
colnames(geno) <- paste(seq(1, dim(geno)[2]))
geno.obj <- SummarizedExperiment(geno)
obj <- rqt(phenotype=pheno, genotype=geno.obj)
res <- geneTest(obj, method="pca", out.type = "D")
print(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.