rqt-geneTest: This function performs a gene-level test based on combined...

geneTestR Documentation

This function performs a gene-level test based on combined effect sizes.

Description

This function performs a gene-level test based on combined effect sizes.

geneTest This function performs a gene-level test based on combined effect sizes.

Usage

geneTest(obj, ...)

## S4 method for signature 'rqt'
geneTest(
  obj,
  perm = 0,
  STT = 0.2,
  weight = FALSE,
  cumvar.threshold = 75,
  out.type = "D",
  method = "pca",
  scaleData = FALSE,
  asym.pval = FALSE,
  penalty = 0.001,
  verbose = FALSE
)

Arguments

obj

Object of class rqt

...

Additional parameters to pass to the function

perm

Integer indicating the number of permutations to compute p-values. Default: 0.

STT

Numeric indicating soft truncation threshold (STT) to convert to gamma parameter (must be <= 0.4). Needed for an optimal parameter a in Gamma-distribution. Default: 0.2. See, for example, Fridley, et al 2013: "Soft truncation thresholding for gene set analysis of RNA-seq data: Application to a vaccine study".

weight

Logical value. Indicates using weights (see Lee et al 2016). Default: FALSE.

cumvar.threshold

Numeric value indicating the explained variance threshold for PCA-like methods. Default: 75

out.type

Character, indicating a type of phenotype. Possible values: D (dichotomous or binary), C (continous or quantitative).

method

Method used to reduce multicollinerity and account for LD. Default: pca. Another methods available: lasso, ridge, pls.

scaleData

A logic parameter (TRUE/FALSE) indicating scaling of the genotype dataset.

asym.pval

Indicates Monte Carlo approximation for p-values. Default: FALSE.

penalty

A value of penalty parameter for LASSO/ridge regression. Default: 0.001

verbose

Indicates verbosing output. Default: FALSE.

Value

Updated rqt object with result slot

Object of class rqt

Examples

data <- data.matrix(read.table(system.file("extdata/test.bin1.dat",
package="rqt"), header=TRUE))
pheno <- data[,1]
geno <- data[, 2:dim(data)[2]]
colnames(geno) <- paste(seq(1, dim(geno)[2]))
geno.obj <- SummarizedExperiment(geno)
obj <- rqt(phenotype=pheno, genotype=geno.obj)
res <- geneTest(obj, method="pca", out.type = "D")
print(res)

izhbannikov/rqt documentation built on Aug. 2, 2024, 1:39 p.m.