#' Address to Tract
#'
# \description{
#' Provides access to the US Census Bureau batch endpoints for locations and geographies.
#' The function has been developed specifically with large data sets in mind. only unique
#' addresses are passed to the API for geocoding. If a data set exceeds 10,000 unique
#' addresses, it will be automatically subset into appropriately sized API calls,
#' geocoded, and then put back together so that a single object is returned.
#' The function implements iteration and optional parallelization in order to geocode datasets
#' larger than the API limit of 10,000 and more efficiently than sending 10,000 per request.
#' The function therefore provides an efficient solution to batch geocoding via the Census Bureau’s services.
#' This implementation assumes that your data are contained in a data.frame or tibble, and that address
#' data are split into a number of component variables: street address, city, state, and five digit zip code.
#' file to the census tract API. Please visit the following link for more details:
#' \href{https://geocoding.geo.census.gov/geocoder/locations/addressbatch?form}{Census Tract Geocoding}
# }
#' @param data A dataframe
#' @param id Unique ID
#' @param street A column that consist of house number and street address
#' @param city City column
#' @param state State column
#' @param zip Zip column
#' @examples
#' \dontrun{
#' tbd_address_to_tract(data = data frame,
#' id = id,
#' street = street,
#' city = city,
#' state = state,
#' zip = zip_code)
#' }
#' @import httr
#' @import tidyverse
#' @import devtools
#' @import RCurl
#' @import urltools
#' @import svDialogs
#' @import utils
#' @import parallel
#' @export
tbd_address_to_tract <- function(data, id = NULL, street, city = NULL, state = NULL, zip = NULL){
parallel = 1
# Check Specification of Arguments
if(missing(data) | missing(street)){
stop('`data` and `street` are required arguments')
}
if(!is.null(id) && any(duplicated(data[[id]]))){
stop('Rows in the `id` column are not unique')
}
# Warn for Omission
if(is.null(city) | is.null(state) | is.null(zip)){
warning('Omission of `city`, `state` or `zip` greatly reduces the speed and accuracy of the geocoder.')
}
# Check Parallel Configuration
if(parallel > 1){
# Check Number of Cores
avail_cores <- parallel::detectCores()
if(parallel > avail_cores){
warning('More cores specified than are available, using ', avail_cores, ' cores instead')
core_count <- avail_cores
}else{
core_count <- parallel
}
}
# Handle NA Arguments
n <- nrow(data)
if(!is.null(id)){
if(!id %in% names(data)){
stop(id, ' is not a defined column name in the data.frame')
}
# Need to Sort User Data for Later Column Binding
data <- data[order(data[[id]]),]
id <- data[[id]]
}else{
id <- seq(n)
}
if(!street %in% names(data)){
stop(street, ' is not a defined column name in the data.frame')
}
if(!is.null(city)){
if(!city %in% names(data)){
stop(city, ' is not a defined column name in the data.frame')
}
city <- data[[city]]
}else{
city <- rep_len(NA, n)
}
if(!is.null(state)){
if(!state %in% names(data)){
stop(state, ' is not a defined column name in the data.frame')
}
state <- data[[state]]
}else{
state <- rep_len(NA, n)
}
if(!is.null(zip)){
if(!zip %in% names(data)){
stop(zip, ' is not a defined column name in the data.frame')
}
zip <- data[[zip]]
}else{
zip <- rep_len(NA, n)
}
# Build a Data.frame
df <- data.frame(
id = id,
street = data[[street]],
city = city,
state = state,
zip = zip,
stringsAsFactors = FALSE
)
# Extract unique addresses
uniq <- df[which(!duplicated(paste(df$street, df$city, df$state, df$zip))),]
if(parallel > 1){
# Split by Core Count, Maximizing the Size of Batches
# Calculate Split Factor (Halve Batch Sizes until appropriately under threshold)
splt_fac <- core_count
while (nrow(uniq) / splt_fac > 1000) {
splt_fac <- 2 * splt_fac
}
batches <- split(uniq, rep_len(seq(splt_fac), nrow(uniq)) )
results <- lapply(batches, tbd_batch_geocoding,
mc.cores = core_count)
}else{ # Non Parallel
# Split and Iterate
batches <- split(uniq, (seq(nrow(uniq))-1) %/% 1000 )
results <- lapply(batches, tbd_batch_geocoding)
}
# Row Bind the List of Responses
api_output <- do.call(rbind, results)
# Join Results with unique
uniq_join <- merge(uniq, api_output, by = 'id' , all.x = TRUE, sort = TRUE)
# Join Uniq with original df and sort
all_join <- merge(df, uniq_join, by = c('street', 'city', 'state', 'zip'), all.x = TRUE)
all_join <- all_join[order(all_join$id.x),]
# Coerce to Numeric Cooridates
all_join$lat <- as.numeric(all_join$lat)
all_join$lon <- as.numeric(all_join$lon)
all_join <- all_join %>%
select('id.x', 'input_address', 'status', 'quality', 'matched_address','lat','lon', 'tiger_line_id', 'tiger_side', 'state_id', 'county_id', 'tract_id', 'block_id') %>%
rename(id = id.x)
geocoded_address_to_tract <<- all_join
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.