size_at_maturity = function(p) {
M = size_distributions(p=p, toget="base_data" )
setDT(M)
M$logcw = log(M$cw)
M = M[ mat %in% c("0", "1") & sex %in% c("0", "1") & is.finite(logcw) , ]
M$mat= as.numeric( as.character(M$mat ))
Mf = M[sex=="1",]
Mm = M[sex=="0",]
of = glm( mat ~ logcw + t + log(z) + factor(year) + factor(region), data=Mf, family=binomial(link="logit"), na.action=na.omit )
AIC(of)
om = glm( mat ~ logcw, data=Mm, family=binomial(link="logit") )
AIC(om)
Mf$predicted = NA
Mf$predicted[ -of$na.action ] = predict(of, data=Mf, type="link", na.action=na.pass)
Mm$predicted = NA
Mm$predicted[ -of$na.action ] = predict(of, data=Mm, type="link", na.action=na.pass)
summary(of)
cor(Mf$predicted, Mf$mat, use="pairwise.complete.obs") # 0.687; 0.8186
plot(Mf$predicted, Mf$mat)
summary(om)
cor(Mm$predicted, Mm$mat) # 0.55
plot(Mm$predicted, Mm$mat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.