inst/markdown/snowcrab_presentation_advisory_sens.md

title: "Snow Crab Advisory SENS" subtitle: "Maritimes Region" metadata-files: - _metadata.yml params: year_assessment: 2024 year_start: 1999 data_loc: "~/bio.data/bio.snowcrab" sens: 1 debugging: FALSE model_variation: logistic_discrete_historical todo: [fishery_results,fishery_model,ecosystem]

#| eval: true
#| output: false
#| echo: false
#| label: setup

  require(knitr)

  knitr::opts_chunk$set(
    root.dir = data_root,
    echo = FALSE,
    out.width="6.2in",
    fig.retina = 2,
    dpi=192
  )

{{< include _load_results.qmd >}}

::: {.landscape}

Terms of Reference

Fishery performance

Fishery statistics

#| label: tbl-fishery-performance-S-ENS
#| echo: false
#| eval: true
#| output: true
#| tbl-cap: "Fishery performance statistics: S-ENS"

r=2
  reg = regions[r]
  REG = reg_labels[r]
  oo = dt[ which(dt$Region==reg), c("Year", "Licenses", "TAC", "Landings", "Effort", "CPUE")] 

  names(oo) = c( "Year", "Licenses", "TAC (t)", "Landings (t)", "Effort (1000 th)", "CPUE (kg/th)" )

  gt::gt(oo) |> gt::tab_options(table.font.size = 20, data_row.padding = gt::px(1), 
    summary_row.padding = gt::px(1), grand_summary_row.padding = gt::px(1), 
    footnotes.padding = gt::px(1), source_notes.padding = gt::px(1), 
    row_group.padding = gt::px(1))


Effort

#| label: fig-effort-timeseries
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 8
#| fig-cap: "Temporal variations in fishing effort."

if (params$sens==1) {
  ts_dir = file.path( data_loc, "assessments", year_assessment, "timeseries", "fishery" )
} else if (params$sens==2) {
  ts_dir = file.path( data_loc, "assessments", year_assessment, "timeseries", "fishery", "split" )
}

include_graphics( file.path( ts_dir, "effort.ts.png" ) )

#| label: fig-effort-map
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 8
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Snow Crab fishing effort from fisheries logbook data for previous and current years (no X 10$^3$ per 10 km X 10 km grid)."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

loc0 = file.path( data_loc, "output", "maps", "logbook", "snowcrab", "annual", "effort" )
yrsplot = year_assessment + c(0:-3)
fn = file.path( loc0, paste( "effort", yrsplot, "png", sep=".") ) 

include_graphics( fn ) 

Landings

#| label: fig-landings-timeseries
#| eval: true 
#| output: true
#| fig-cap: "Landings (t) of Snow Crab on the SSE. For 4X, the year refers to the starting year of the season. Inset is a closeup view of the timeseries for N-ENS and 4X."
#| fig-dpi: 144
#| fig-height: 8

if (params$sens==1) {
  ts_dir = file.path( data_loc, "assessments", year_assessment, "timeseries", "fishery" )
} else if (params$sens==2) {
  ts_dir = file.path( data_loc, "assessments", year_assessment, "timeseries", "fishery", "split" )
}

include_graphics( file.path( ts_dir, "landings.ts.png" ) )
#| label: fig-landings-map
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Snow Crab landings from fisheries logbook data for previous and current years (tons per 10 km x 10 km grid)."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

loc0 = file.path( data_loc, "output", "maps", "logbook", "snowcrab", "annual", "landings" )
yrsplot = year_assessment + c(0:-3)
fn = file.path( loc0, paste( "landings", yrsplot, "png", sep=".") ) 

include_graphics( fn ) 

Catch rates

#| label: fig-cpue-timeseries
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig-cap: "Temporal variations in crude catch rates of Snow Crab (kg/trap haul)."

if (params$sens==1) {
  ts_dir = file.path( data_loc, "assessments", year_assessment, "timeseries", "fishery" )
} else if (params$sens==2) {
  ts_dir = file.path( data_loc, "assessments", year_assessment, "timeseries", "fishery", "split" )
}

include_graphics( file.path( ts_dir, "cpue.ts.png" ) ) 
#| label: fig-cpue-map
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Snow Crab crude catch rates on the Scotian Shelf for previous and current years. Units are kg/trap haul per 10 km x 10 km grid."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

loc0= file.path( data_loc, "output", "maps", "logbook", "snowcrab", "annual", "cpue" )
yrsplot = year_assessment + c(0:-3)
fn = file.path( loc0, paste( "cpue", yrsplot, "png", sep=".") ) 

include_graphics( fn ) 

Bycatch of non-target species

At sea observed trips

#| label: tbl-observed-summary
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 5
#| echo: false 
#| layout-ncol: 1
#| tbl-cap: "Table of observed data coverage"

fns = c( 
  "observersummary2.png"
)

include_graphics( file.path( media_supplementary, fns )  ) 

#| label: fig-map-observer-locations
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Snow Crab At-sea-observer locations."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

loc = file.path( data_loc, "output", "maps", "observer.locations" )
yrsplot = year_assessment + c(0:-3) 

fns = paste( "observer.locations", yrsplot, "png", sep="." ) 
fn = file.path( loc, fns ) 

include_graphics( fn )

Discard of (all) soft-shell crab map

#| label: fig-observed-softshell-map
#| eval: true 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Map of observed soft shell locations."
#| fig-subcap:  
#|   - "CFA23"
#|   - "CFA24" 

# #|   - "N-ENS"
fns = c( 
#  "nens_soft_crab_positions_68.png" #
  "cfa23_soft_crab_positions_68.png",
  "cfa24_soft_crab_positions_68.png"
)

include_graphics( file.path( media_supplementary, fns )  ) 

Discard of non-target species ("Bycatch")

#| label: tbl-fishery-discard-effort-sens
#| eval: true
#| output: true
#| echo: false 
#| tbl-cap: "Bycatch (kg) estimated from fisheries effort. Dots indicate values less than 10 kg/year. Where species exist in a list but there is no data, this indicates some historical bycatch. The overall average is from 2004 to present." 

r = 2
  reg = regions[r]
  REG = reg_labels[r]
  o = BC[[reg]]   
  oo = o$bycatch_table_effort
  oo[ oo==0 ] = NA
  oo[ is.na(oo) ] = "."
  gt::gt(oo) |> gt::tab_options(table.font.size = 12, data_row.padding = gt::px(1), 
    summary_row.padding = gt::px(1), grand_summary_row.padding = gt::px(1), 
    footnotes.padding = gt::px(1), source_notes.padding = gt::px(1), 
    row_group.padding = gt::px(1))



Environmental and climate change considerations

Bottom temperatures

#| label: fig-bottom-temperatures-timeseries
#| eval: true
#| echo: false 
#| output: true
#| fig-cap: "Annual variations in bottom temperature observed during the Snow Crab survey. The horizontal (black) line indicates the long-term, median temperature within each subarea. Error bars represent standard errors." 
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold 

tloc = file.path( data_loc, "assessments", year_assessment, "timeseries"  )

fns = c( 
  file.path("survey", "t.png")
)

include_graphics( file.path( tloc, fns) )

#| label: fig-figures-temperature-bottom-map
#| eval: true
#| output: true
#| fig-dpi: 144
#| fig-height: 4 
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Bottom temperature ($^\\circ$C) observed during the Snow Crab survey."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

map_outdir = file.path( p$project.outputdir, "maps", "survey", "snowcrab", "annual" )
map_years  = year_assessment + c(0:-3)

fn = check_file_exists( file.path( 
  map_outdir, "t", paste( "t", map_years, "png", sep="." )  
) )

include_graphics( fn )
#| label: fig-bottom-temperatures-timeseries-modelled
#| eval: true
#| echo: false 
#| output: true
#| fig-cap: "Temporal variations in bottom temperature from a historical reanalysis of temperature data. Red horizontal line is at $7^\\circ$C. Presented are 95% Credible Intervals of spatial variability in temperature at each time slice after adjustment for spatiotemporal autocorrelation."
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold 

tloc = file.path( data_loc, "assessments", year_assessment, "timeseries"  )

fns = c( 
  "temperature_bottom.png" 
)

include_graphics( file.path( tloc, fns) )

#| label: fig-figures-temperature-bottom-map-modelled
#| eval: true
#| output: true
#| fig-dpi: 144
#| fig-height: 4 
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Bottom temperature ($^\\circ$C) estimated from a historical analysis of temperature data for 1 September."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

map_outdir = file.path( data_root, 'aegis', 'temperature', 'modelled', 'default', 'maps' )
map_years  = year_assessment + c(0:-3)

fn = check_file_exists( file.path( 
  map_outdir, paste( 'predictions.',  map_years, '.0.75',  '.png', sep='') 
) )

include_graphics( fn )

Interspecific interactions

#| label: fig-speciescomposition-biplot
#| eval: true
#| echo: false 
#| output: true
#| fig.show: hold 
#| fig-dpi: 144
#| fig-height: 6
#| fig-cap: "Species ordination (PCA: eigenanalysis of correlation matrices). PC1 is associatd with bottom temperatures. PC2 is associated with depth. Snow crab is shown as an orange dot."

xlab = paste("PC1 (", pca$variance_percent[1], "%)", sep="" )
ylab = paste("PC2 (", pca$variance_percent[2], "%)", sep="" )
plot( PC2 ~ PC1, pcadata, type="n", xlab=xlab, ylab=ylab )
text( PC2 ~ PC1, labels=vern, data=pcadata, cex=0.7, col="slateblue"  )
i = grep("Snow crab", pcadata$vern, ignore.case=TRUE)
points( PC2 ~ PC1, pcadata[i,], pch=19, cex=3.0, col="darkorange" )

Predators

#| label: tbl-predators
#| echo: false
#| eval: true
#| output: true
#| tbl-cap: "Main predators based upon frequency of occuence of snow crab in finfish stomach samples, unadjusted for sampling effort."

gt::gt(counts[1:11,]) 

#| label: fig-predator-biplot
#| eval: true
#| echo: false 
#| output: true
#| fig.show: hold 
#| fig-dpi: 144
#| fig-height: 6
#| fig-cap: "Main predators of snow crab on Scotian Shelf of Atlantic Canada (1999-2020). Relative location of snow crab predators (green) in the species composition ordination. Snow crab in orange. Of 58,287 finfish stomach samples, 159 had snow crab (0.28%). There is no information on snow crab diet in the database."
#| fig-subcap: 
#|   - "Total random effect (space and space-time) - PC1"
#|   - "Total random effect (space and space-time) - PC1"
#|   - "Mean annual PC1 score."
#|   - "Mean annual PC2 score."
#| layout-ncol: 1

# potential predators:
lookup= c( "cod", "halibut", "sculpin", "skate", "plaice", "hake", "wolffish", "atlantic cod", "atlantic halibut", "longhorn sculpin", "thorny skate", "striped atlantic wolffish", "haddock", "american plaice", "smooth skate", "winter skate", "white hake", "shorthorn sculpin", "eelpout newfoundland", "squirrel or red hake", "sea raven", "ocean pout", "barndoor skate", "Squid" )

xlab = paste("PC1 (", pca$variance_percent[1], "%)", sep="" )
ylab = paste("PC2 (", pca$variance_percent[2], "%)", sep="" )
plot( PC2 ~ PC1, pcadata, type="n", xlab=xlab, ylab=ylab )
text( PC2 ~ PC1, labels=vern, data=pcadata, cex=0.75, col="slategrey"  )
i = grep("Snow crab", pcadata$vern, ignore.case=TRUE)
points( PC2 ~ PC1, pcadata[i,], pch=19, cex=3.0, col="darkorange" )
j = NULL
for (k in lookup) j = c(j, grep( k, pcadata$vern, ignore.case=TRUE))    
j = unique(j)
points( PC2 ~ PC1, pcadata[j,], pch=19, cex=2.0, col="lightgreen" )
text( PC2 ~ PC1, labels=vern, data=pcadata[j,], cex=0.75, col="darkgreen"  )

Prey

#| label: fig-diet-biplot
#| eval: true
#| echo: false 
#| output: true
#| fig.show: hold 
#| fig-dpi: 144
#| fig-height: 6
#| fig-cap: "Relative location of snow crab prey (green) in the species composition ordination. Snow crab in orange. Most of the potental prey are found to the right of snow crab (i.e. colder-water species) at a variety of depths."
#| fig-subcap: 
#|   - "Total random effect (space and space-time) - PC1"
#|   - "Total random effect (space and space-time) - PC1"
#|   - "Mean annual PC1 score."
#|   - "Mean annual PC2 score."
#| layout-ncol: 1

# potential food items:
lookup= c( "echinoderm", "polychaete", "maldane", "nereis", "shrimp", "pandalus", "rock crab", "toad crab", "lesser toad crab", "quahog", "artica islandica", "mollusc", "mytilus", "modiolus", "hiatella", "starfish", "sea anemone", "brittle star", "sea star", "sea anemone", "ophiura", "ophiopholis", "edwardsia", "metridium", "euphasid" )

xlab = paste("PC1 (", pca$variance_percent[1], "%)", sep="" )
ylab = paste("PC2 (", pca$variance_percent[2], "%)", sep="" )
plot( PC2 ~ PC1, pcadata, type="n", xlab=xlab, ylab=ylab )
text( PC2 ~ PC1, labels=vern, data=pcadata, cex=0.75, col="slategrey"  )
i = grep("Snow crab", pcadata$vern, ignore.case=TRUE)
points( PC2 ~ PC1, pcadata[i,], pch=19, cex=3.0, col="darkorange" )
j = NULL
for (k in lookup) j = c(j, grep( k, pcadata$vern, ignore.case=TRUE))    
j = unique(j)
points( PC2 ~ PC1, pcadata[j,], pch=19, cex=2.0, col="lightgreen" )
text( PC2 ~ PC1, labels=vern, data=pcadata[j,], cex=0.75, col="darkgreen"  )

Competitors

#| label: fig-competitor-biplot
#| eval: true
#| echo: false 
#| output: true
#| fig.show: hold 
#| fig-dpi: 144
#| fig-height: 6
#| fig-cap: "Potential competitors of snow crab on Scotian Shelf of Atlantic Canada (1999-2020). Relative location of snow crab predators (green) in the species composition ordination. Snow crab in orange."
#| fig-subcap: 
#|   - "Total random effect (space and space-time) - PC1"
#|   - "Total random effect (space and space-time) - PC1"
#|   - "Mean annual PC1 score."
#|   - "Mean annual PC2 score."
#| layout-ncol: 1

# potential predators:

lookup= c( "pandalus", "Jonah Crab", "Atlantic Rock Crab" , "Toad Crab", "Hyas Coarctatus", "Northern Stone Crab" )   # add more here: most are not direct compeitors as they have slightly different depth/temp preferences


xlab = paste("PC1 (", pca$variance_percent[1], "%)", sep="" )
ylab = paste("PC2 (", pca$variance_percent[2], "%)", sep="" )
plot( PC2 ~ PC1, pcadata, type="n", xlab=xlab, ylab=ylab )
text( PC2 ~ PC1, labels=vern, data=pcadata, cex=0.75, col="slategrey"  )
i = grep("Snow crab", pcadata$vern, ignore.case=TRUE)
points( PC2 ~ PC1, pcadata[i,], pch=19, cex=3.0, col="darkorange" )
j = NULL
for (k in lookup) j = c(j, grep( k, pcadata$vern, ignore.case=TRUE))    
j = unique(j)
points( PC2 ~ PC1, pcadata[j,], pch=19, cex=2.0, col="lightgreen" )
text( PC2 ~ PC1, labels=vern, data=pcadata[j,], cex=0.75, col="darkgreen"  )

Viable habitat

#| label: fig-fb-habitat-timeseries
#| eval: true
#| echo: false 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Habitat viability (probability; fishable Snow Crab). Means and 95\\% Credible Intervals are presented."

loc = file.path( data_loc, "modelled", "default_fb", "aggregated_habitat_timeseries" )
include_graphics( file.path( loc, "habitat_M0.png") )

#| label: fig-fb-habitat-map
#| eval: true
#| echo: false 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Habitat viability (probability; fishable Snow Crab)."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#| layout: [[100], [100], [50,50], [50,50], [50,50], [50,50]]

loc = file.path( data_loc, "modelled", "default_fb", "predicted_habitat" )
vn = "habitat."
yrsplot =  year_assessment + c(0:-9)

fns = file.path( loc, paste( vn, yrsplot, ".png", sep="") )
include_graphics( fns )

Stock status and trends

Data sources: Trawl Survey

Marine Protected Areas (St Ann's, Gully) were not sampled

#| label: fig-survey-locations-map 
#| eval: true
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Survey locations."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

loc = file.path( data_loc, "output", "maps", "survey.locations" )
years = year_assessment + c(0:-3)
fn = check_file_exists( file.path( loc, paste( "survey.locations", years, "png", sep=".") ))
include_graphics( fn )

Growth patterns inferred from modes

#| label: fig-growth-modes-growth
#| eval: true
#| output: true
#| fig-dpi: 144
#| fig-height: 4 
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Inferred growth derived from *Kernel Mixture Models* (priors)."
#| fig-subcap: 
#|   - "Female growth trajectory"
#|   - "Male growth trajectory"

fns = file.path( media_loc, c(
  "plot_growth_female.png",
  "plot_growth_male.png"
))

include_graphics( fns )

Recruitment: males

#| label: fig-sizefeq-male
#| eval: true
#| output: true
#| fig-cap: "Size-frequency (areal density; no/km$^2$) histograms by carapace width of male Snow Crab. The vertical line represents the legal size (95 mm). Immature animals are shown with light coloured bars, mature with dark."
#| fig-dpi: 144
#| fig-height: 10

if (params$sens==1) {
  sf_outdir = file.path( p$annual.results, "figures", "size.freq", "survey")
} else if (params$sens==2) {
  sf_outdir = file.path( p$annual.results, "figures", "size.freq", "survey", "split")
}

include_graphics( file.path( sf_outdir,  "male.denl.png" ) )

Reproduction (longer term)

#| label: fig-sizefeq-female
#| eval: true
#| output: true
#| fig-cap: "Size-frequency (areal density; no/km$^2$) histograms by carapace width of female Snow Crab. Immature animals are shown with light coloured bars, mature with dark."
#| fig-dpi: 144
#| fig-height: 10


if (params$sens==1) {
  sf_outdir = file.path( p$annual.results, "figures", "size.freq", "survey")
} else if (params$sens==2) {
  sf_outdir = file.path( p$annual.results, "figures", "size.freq", "survey", "split")
}

fn = file.path( sf_outdir, "female.denl.png" )

include_graphics( fn )

S-ENS: - increase since 2021 - egg and larval production is expected to be high in the next year

#| label: fig-totno-female-mat-timeseries
#| eval: true
#| output: true
#| fig-cap: "The crude, unadjusted geometric mean of mature female density log$_{10}$(no/km$^2$) from the Snow Crab survey. Error bars represent 95\\% Confidence Intervals. Note the absence of data in 2020. Prior to 2004, surveys were conducted in the Spring."
#| fig-dpi: 144
#| fig-height: 4 


if (params$sens==1) {
  ts_outdir = file.path( p$annual.results, "timeseries", "survey")
} else if (params$sens==2) {
  ts_outdir = file.path( p$annual.results, "timeseries", "survey", "split")
}

fn = file.path( ts_outdir, paste("totno.female.mat", "png", sep=".") )
include_graphics( fn )

#| label: fig-totno-female-mat-map
#| eval: true
#| output: true
#| fig-dpi: 144
#| fig-height: 4 
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Mature female density log$_{10}$(no/km$^2$) from the Snow Crab survey."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""

map_outdir = file.path( p$project.outputdir, "maps", "survey", "snowcrab","annual" )
map_years  = year_assessment + c(0:-3)

fn = check_file_exists( file.path( 
  map_outdir, "totno.female.mat", paste( "totno.female.mat", map_years, "png", sep="." )  
) )

include_graphics( fn )

Fishable biomass density

#| label: fig-R0-timeseries
#| eval: true
#| output: true
#| fig-cap: "The crude, unadjusted geometric mean fishable biomass density log$_{10}$(t/km$^2$) from the Snow Crab survey. Error bars represent 95\\% Confidence Intervals. Note the absence of data in 2020. Prior to 2004, surveys were conducted in the Spring."
#| fig-dpi: 144
#| fig-height: 4 

if (params$sens==1) {
  ts_outdir = file.path( p$annual.results, "timeseries", "survey")
} else if (params$sens==2) {
  ts_outdir = file.path( p$annual.results, "timeseries", "survey", "split")
}

fn = file.path( ts_outdir, paste("R0.mass", "png", sep=".") )
include_graphics( fn )

#| label: fig-R0-map
#| eval: true
#| output: true
#| fig-dpi: 144
#| fig-height: 4 
#| echo: false 
#| layout-ncol: 2
#| fig-cap: "Snow Crab survey fishable component biomass density log$_{10}$(t/km$^2$)."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""


map_outdir = file.path( p$project.outputdir, "maps", "survey", "snowcrab","annual" )
map_years  = year_assessment + c(0:-3)

fn = check_file_exists( file.path( 
  map_outdir, "R0.mass", paste( "R0.mass", map_years, "png", sep="." )  
) )

include_graphics( fn )

Fishable biomass index

#| label: fig-fbindex-timeseries
#| eval: true
#| echo: false 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "The fishable biomass index (t) predicted by CARSTM of Snow Crab survey densities. Error bars represent Bayesian 95\\% Credible Intervals. Note large errors in 2020 when there was no survey."

fn = file.path( data_loc, "modelled", "default_fb", "aggregated_biomass_timeseries" , "biomass_M0.png")
include_graphics( fn )

#| label: fig-fbindex-map
#| eval: true
#| echo: false 
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Biomass index log~10(t/km$^2$) predicted from the Snow Crab survey."
#| fig-subcap: 
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#|   - ""
#| layout: [[100], [100], [50,50], [50,50], [50,50], [50,50]]

loc = file.path( data_loc, "modelled", "default_fb", "predicted_biomass_densities" )
yrsplot =  year_assessment + c(0:-9)

fns = file.path( loc, paste( "biomass", yrsplot, "png", sep=".") )
include_graphics( fns )

Modelled pre-fishery fishable biomass

#| label: fig-logisticPredictions
#| eval: true
#| echo: false
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Fishable, posterior mean modelled biomass (pre-fishery; kt) are shown in dark orange. Light orange are posterior samples of modelled biomass (pre-fishery; kt) to illustrate the variability of the predictions. The biomass index (post-fishery, except prior to 2004) after model adjustment by the model catchability coefficient is in gray."
# #| fig-subcap:
# #|   - "N-ENS"
# #|   - "S-ENS"
# #|   - "4X"

loc = file.path( data_loc, "fishery_model", year_assessment, "logistic_discrete_historical" )
fns = file.path( loc, c(
  #"plot_predictions_cfanorth.png"
  #,
  "plot_predictions_cfasouth.png" #,
  #"plot_predictions_cfa4x.png"
) )

include_graphics( fns )

Posterior estimates of fishing mortality

#| label: fig-logisticFishingMortality
#| eval: true
#| echo: false
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Time-series of modelled instantaneous fishing mortality from Model 1, for N-ENS (left), S-ENS (middle), and 4X (right). Samples of the posterior densities are presented, with the darkest line being the mean."
# #| fig-subcap:
# #|   - "N-ENS"
# #|   - "S-ENS"
# #|   - "4X"

odir = file.path( fishery_model_results, year_assessment, "logistic_discrete_historical" )
fns = file.path( odir, c(
  #"plot_fishing_mortality_cfanorth.png"
  #,
  "plot_fishing_mortality_cfasouth.png" #,
  #"plot_fishing_mortality_cfa4x.png"
))

include_graphics( fns )

Reference Points

| | N-ENS | S-ENS | 4X | |----- | ----- | ----- | ----- | | | | | | |q | r round(q_north, 3) (r round(q_north_sd, 3)) | r round(q_south, 3) (r round(q_south_sd, 3)) | r round(q_4x, 3) (r round(q_4x_sd, 3)) | |r | r round(r_north, 3) (r round(r_north_sd, 3)) | r round(r_south, 3) (r round(r_south_sd, 3)) | r round(r_4x, 3) (r round(r_4x_sd, 3)) | |K | r round(K_north, 2) (r round(K_north_sd, 2)) | r round(K_south, 2) (r round(K_south_sd, 2)) | r round(K_4x, 2) (r round(K_4x_sd, 2)) | |Prefishery Biomass | r round(B_north[t0], 2) (r round(B_north_sd[t0], 2)) | r round(B_south[t0], 2) (r round(B_south_sd[t0], 2)) | r round(B_4x[t0], 2) (r round(B_4x_sd[t0], 2)) | |Fishing Mortality | r round(FM_north[t0], 3) (r round(FM_north_sd[t0], 3)) | r round(FM_south[t0], 3) (r round(FM_south_sd[t0], 3)) | r round(FM_4x[t0], 3) (r round(FM_4x_sd[t0], 3)) |

: Reference points from the logistic biomass dynamics fishery model. K is Carrying capacity (kt); and r is Intrinsic rate of increase (non-dimensional). Note that FMSY (fishing mortality associated with 'Maximum Sustainable Yield') is r/2. Similarly, BMSY (biomass associated with 'Maximum Sustainable Yield') is K/2. SD is posterior Standard deviations.* {#tbl-reference-points}

#| label: fig-ReferencePoints
#| eval: true
#| echo: false
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Harvest control rules for the Scotian Shelf Snow Crab fisheries."

fn = file.path( media_loc, "harvest_control_rules.png")
include_graphics( fn )

#| label: fig-logistic-hcr
#| eval: true
#| echo: false
#| output: true
#| fig-dpi: 144
#| fig-height: 4
#| fig.show: hold
#| fig-cap: "Reference Points (fishing mortality and modelled biomass) from the Fishery Model, for N-ENS (left), S-ENS (middle), and 4X (right). The large yellow dot indicates most recent year and the 95\\% CI. Not: the model does not account for illegal and unreported landings, and interspecific interactions. Prefishery."
# #| fig-subcap:
# #|   - "N-ENS"
# #|   - "S-ENS"
# #|   - "4X"

odir = file.path( fishery_model_results, year_assessment, "logistic_discrete_historical" )

fns = file.path( odir, c(
  # "plot_hcr_cfanorth.png" # ,
  "plot_hcr_cfasouth.png" #,
  # "plot_hcr_cfa4x.png"
) )

include_graphics( fns )

Major sources of uncertainty

Conclusions

The SSE continues to experience rapid ecosystem and climatic variations. Under such conditions, it is prudent to be careful.

S-ENS: - Recruitment to the fishery continues at a sustainable rate matching total mortality. - Remains in the “healthy” zone.

Acknowledgements

END

:::



jae0/snowcrab documentation built on June 13, 2025, 3:51 p.m.