Description Usage Arguments Value Examples
Matches the maps using probabilistic entropy maximization
1 | match_support_entropy(X, Y, sigma = 0.1, numReps = 100)
|
X |
an n x d matrix of vectors |
Y |
an n x d matrix of vectors |
sigma |
a tuning parameter |
numReps |
the number of iterations. |
The final orthogonal matrix
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | library(rstiefel)
set.seed(2019)
#generate a bunch of normals
X <- matrix(rnorm(1000,1,.2),ncol= 4)
#implicit assignment from X to Y
Y <- rbind(X,X)
#generate a random 4 x 4 orthogonal matrix
W <- rustiefel(4,4)
#hit Y by the orthogonal matrix
Y <- Y %*% W
#Solve the problem using both max entropy and optimal transport
test <- match_support_entropy(X,Y,numReps = 20)
test2 <-match_support(X,Y,numReps = 50, alpha =.5)
X <- matrix(rnorm(100,.2,.02),ncol= 5)
Y <- rbind(X,X)
W <- rustiefel(5,5)
Y <- Y %*% W
test <- match_support_entropy(X,Y,numReps = 10)
test2 <- match_support(X,Y,numReps = 10)
set.seed(2018)
X <- matrix(rnorm(900,1,.1),ncol= 9)
Y <- rbind(X,X)
W <- rustiefel(9,9)
Y <- Y %*% W
test <- match_support_entropy(X,Y,numReps = 50)
test2 <- match_support(X,Y,lambda_init = 4,numReps = 10,Q=W)
D <- 3
N <- 50
M <- 60
X <- matrix(rnorm(N*D),N,D)
X <- t(t(X)/sqrt(colSums(X^2)))
Y <- matrix(rnorm(M*D),M,D)
Y = t(t(Y)/sqrt(colSums(Y^2)))
X = abs(X)
Y = -abs(Y)
sigma = 0.1
niter = 50
test <- match_support_entropy(X,Y,sigma=.1,numReps = 50)
test2 <- match_support(X,Y,lambda_init = 1,numReps =10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.