R/cost_predict.R

Defines functions predict_a

Documented in predict_a

#' Predict a value based on probability and cost of misprediction
#'
#' This function takes in a matrix of costs for mispredicting and a matrix of probabilities of various outcomes.  It returns TRUE if you should predict a, and FALSE if you should predict not-a
#' @param c the costs matrix
#' @param p the probability matrix  
#' @keywords predict probability cost
#' @export
#' @examples
#' predict_a(c, p)
predict_a <- function(c, p) {
  # c is a cost matrix of the form:
  #                            actual
  #                         a              b        c
  #               a        100            100       ...
  #   prediction  !a       200             0        ...
  # 
  
  # p is a probability matrix of the form:
  #                            Probability
  #                         a              b        c
  #               a        0.2            0.8       ...
  # ...which will be normalized to a total of 1.0
  
  #don't pass in negative values, n00b
  if(min(p) < 0)
    p <- p + abs(min(p))
  if(min(c) < 0)
    return(FALSE)
  
  #normalize p
  if(sum(p) == 0)
    return(FALSE)
  p <- p/sum(p)
  
  #cost of predicting a:
  #cost_p_a = p(a) * cost(a | p_a) + p(b) * cost(b | p_a) ...
  cost_p_a = 0
  for (i in 1:length(c[1,])) {
    cost_p_a = cost_p_a + p[i] * c[1,i]
  }
  #cost of predicting !a:
  #cost_p_!a = p(a) * cost(a | p_!a) + p(b) * cost(b | p_!a) ...
  cost_p_not_a = 0
  for (i in 1:length(c[1,])) {
    cost_p_not_a = cost_p_not_a + p[i] * c[2,i]
  }
  #if cost_p_a > cost_p_!a, we should predict a
  return(cost_p_a < cost_p_not_a)
}
jakewalker56/jml documentation built on May 17, 2017, 7:42 a.m.