Description Usage Arguments Value Parallelization See Also Examples
View source: R/moo_df_get_indicators.R
The function expects a data frame with Pareto-front approximation sets given
in the columns passed by obj.cols
and optional meta-columns “problem”
“algorithm” and “repl”. Given a set of multi-objective performance
indicators, the function splits the data by the meta-columns and calculates the
indicator values for each approximation set.
1 | df_get_indicators(x, obj.cols, unary, rsets = list(), format = "long")
|
x |
[ |
obj.cols |
[ |
unary |
[ |
rsets |
[ |
format |
[ |
A data frame with columns “problem”,
“algorithm”, “repl”, and columns with the respective
indicator values (see argument format
for details).
This function supports parallelization for faster execution via the
package future. A parallel backend (e.g., multicore (on Unix/Linux/MacOS),
multisession etc.) can be selected via plan
.
Other multi-objective performance indicators:
cov()
,
eps()
,
gd()
,
hv()
,
os()
,
r1()
,
rse()
1 2 3 4 5 6 7 8 9 | # load sample data set
data(emoas_on_zdt)
# get indicators in long format
inds = df_get_indicators(emoas_on_zdt, obj.cols = c("y1", "y2"),
unary = list(
hv = list(), # hv has no parameters
rse = list(s = 0.5),
ahd = list(p = 2)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.