library(TrendCatcher)
severe.path<-system.file("extdata", "MasterListSevere.rda", package = "TrendCatcher") load(severe.path) moderate.path<-system.file("extdata", "MasterListModerate.rda", package = "TrendCatcher") load(moderate.path) ht.path<-system.file("extdata", "htSevere.rda", package = "TrendCatcher") load(ht.path)
#head(ht.severe$GO.df) head(ht.severe$GO.df)
ht.severe$merge.df %>% filter(Description == "neutrophil activation")
To show the DDEGs from severe group which were enriched for neutrophil activation pathway, and how their temporal behavior differs between moderate and severe group. We applied LOESS smoothing curve fitting method.
g<-draw_CurveComp(master.list.1 = master.list.severe, master.list.2 = master.list.moderate, ht.1 = ht.severe, pathway = "neutrophil activation",group.1.name = "severe", group.2.name = "moderate") print(g)
To quantify which time interval these two group separate, we applied permutation test and marked the significant separation time in grey.
perm_output<-draw_CurveComp_Perm(master.list.1 = master.list.severe, master.list.2 = master.list.moderate, ht.1 = ht.severe, pathway = "neutrophil activation", group.1.name = "severe", group.2.name = "moderate", n.perm = 100, parall = FALSE, pvalue.threshold = 0.05)
names(perm_output)
perm_output$plot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.