1. Load TrendCatcher R package.

library(TrendCatcher)

2. Read in the demo count table.

TrendCatcher requires the input count table in CSV file and with the column name in format as "ProjectName_Time_Rep1". And the first column as gene symbol or gene ensembl ID.

example.file.path<-system.file("extdata", "Brain_DemoCountTable.csv", package = "TrendCatcher")
tb<-read.csv(example.file.path, row.names = 1)
head(tb)

3. Run TrendCatcher and generate master.list object

This function will take few minutes to finish running with multiple cores.

example.file.path<-system.file("extdata", "Brain_DemoCountTable.csv", package = "TrendCatcher")

master.list<-run_TrendCatcher(count.table.path = example.file.path,
baseline.t = 0,
time.unit = "h",
min.low.count = 1,
para.core.n = NA,
dyn.p.thres = 0.05)

4. Check master.list in detail.

To save time of running, we already put the output master.list object in the '/inst/extdata' folder. You can simply load it into your environment.

demo.master.list.path<-system.file("extdata", "BrainMasterList.rda", package = "TrendCatcher")
load(demo.master.list.path)

First, check what elements are included in the master.list list object.

names(master.list)
print(c(master.list$time.unit, master.list$baseline.t))
master.list$t.arr
master.list$Project.name
head(master.list$raw.df)

The fitted.count table each column represents.

head(master.list$fitted.count)

For the master table, each column represents.

head(master.list$master.table)


jaleesr/TrendCatcher_1.0.0 documentation built on Jan. 29, 2024, 9:34 p.m.