BC.discernibility.mat.FRST: The decision-relative discernibility matrix based on fuzzy...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/BasicFuzzyRoughSets.R

Description

This is a function that is used to build the decision-relative discernibility matrix based on FRST. It is a matrix whose elements contain discernible attributes among pairs of objects. By means of this matrix, we are able to produce all decision reducts of the given decision system.

Usage

1
2
3
4
5
BC.discernibility.mat.FRST(
  decision.table,
  type.discernibility = "standard.red",
  control = list()
)

Arguments

decision.table

a "DecisionTable" class representing the decision table. See SF.asDecisionTable. It should be noted that this case only supports the nominal/symbolic decision attribute.

type.discernibility

a string representing a type of discernibility. See in Section Details.

control

a list of other parameters.

  • type.relation: a type of fuzzy indiscernibility relation. The default value is type.relation = c("tolerance", "eq.1").

    See BC.IND.relation.FRST.

  • type.aggregation: a type of aggregation operator. The default value is type.aggregation = c("t.tnorm", "lukasiewicz").

    See BC.IND.relation.FRST.

  • t.implicator: a type of implicator operator. The default value is "lukasiewicz".

    See BC.LU.approximation.FRST.

  • type.LU: a type of method of lower and upper approximations. The default value is "implicator.tnorm".

    See BC.LU.approximation.FRST.

  • alpha.precision: a numeric value representing a precision variable. It is used when using "alpha.red" as type.discernibility. The default value is 0.05.

    See BC.LU.approximation.FRST.

  • show.discernibilityMatrix: a boolean value determining whether the discernibility matrix will be shown or not (NULL). The default value is FALSE.

  • epsilon: a numeric between 0 and 1 representing the ε value on

    type.discernibility = "gaussian.red". It should be noted that when having nominal values on all attributes then ε should be 0. The default value is 0.

  • delta: a numeric representing the δ value on "gaussian" equations

    (see BC.IND.relation.FRST). The default value is 2.

  • range.object: a vector representing considered objects to construct the k-relative discernibility matrix. The default value is NULL which means that we are using all objects in the decision table.

Details

In this function, we provide several approaches in order to generate the decision-relative discernibility matrix. Theoretically, all reducts are found by constructing the matrix that contains elements showing discernible attributes among objects. The discernible attributes are determined by a specific condition which depends on the selected algorithm. A particular approach can be executed by selecting a value of the parameter type.discernibility. The following shows the different values of the parameter type.discernibility corresponding approaches considered in this function.

Value

A class "DiscernibilityMatrix" containing the following components:

Author(s)

Lala Septem Riza

References

D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu, "A Novel Algorithm for Finding Reducts with Fuzzy Rough Sets", IEEE Trans. on Fuzzy Systems, vol. 20, no. 2, p. 385 - 389 (2012).

D. G. Chen, Q. H. Hu, and Y. P. Yang, "Parameterized Attribute Reduction with Gaussian Kernel Based Fuzzy Rough Sets", Information Sciences, vol. 181, no. 23, p. 5169 - 5179 (2011).

E. C. C. Tsang, D. G. Chen, D. S. Yeung, X. Z. Wang, and J. W. T. Lee, "Attributes Reduction Using Fuzzy Rough Sets", IEEE Trans. Fuzzy Syst., vol. 16, no. 5, p. 1130 - 1141 (2008).

S. Zhao, E. C. C. Tsang, and D. Chen, "The Model of Fuzzy Variable Precision Rough Sets", IEEE Trans. on Fuzzy Systems, vol. 17, no. 2, p. 451 - 467 (2009).

See Also

BC.discernibility.mat.RST, BC.LU.approximation.RST, and BC.LU.approximation.FRST

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#######################################################################
## Example 1: Constructing the decision-relative discernibility matrix
## In this case, we are using The simple Pima dataset containing 7 rows. 
#######################################################################
data(RoughSetData)
decision.table <- RoughSetData$pima7.dt 

## using "standard.red"
control.1 <- list(type.relation = c("tolerance", "eq.1"), 
                type.aggregation = c("t.tnorm", "min"), 
                t.implicator = "kleene_dienes", type.LU = "implicator.tnorm")
res.1 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red", 
                                    control = control.1)

## using "gaussian.red"
control.2 <- list(epsilon = 0)
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "gaussian.red",
                                    control = control.2)

## using "alpha.red"
control.3 <- list(type.relation = c("tolerance", "eq.1"), 
                type.aggregation = c("t.tnorm", "min"),
                t.implicator = "lukasiewicz", alpha.precision = 0.05)
res.3 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "alpha.red", 
                                    control = control.3)

## using "min.element"
control.4 <- list(type.relation = c("tolerance", "eq.1"), 
                type.aggregation = c("t.tnorm", "lukasiewicz"),
                t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.4 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "min.element", 
                                    control = control.4)

#######################################################################
## Example 2: Constructing the decision-relative discernibility matrix
## In this case, we are using the Hiring dataset containing nominal values
#######################################################################
## Not run: data(RoughSetData)
decision.table <- RoughSetData$hiring.dt 

control.1 <- list(type.relation = c("crisp"), 
                type.aggregation = c("crisp"),
                t.implicator = "lukasiewicz", type.LU = "implicator.tnorm")
res.1 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "standard.red", 
                                    control = control.1)

control.2 <- list(epsilon = 0)
res.2 <- BC.discernibility.mat.FRST(decision.table, type.discernibility = "gaussian.red",
                                    control = control.2)
## End(Not run)

janusza/RoughSets documentation built on Jan. 26, 2020, 11:22 p.m.