compute_clustermass_halfbw <- function (distribution, sdistribution, threshold, aggr_FUN, bw, alternative = "two.sided"){
switch(alternative,
two.sided = {
distribution <- abs(distribution)
sdistribution <- abs(sdistribution)
threshold <- abs(threshold)
selected <- (distribution > threshold)
sselected <- (sdistribution > threshold)
extreme = function(x) max(x, na.rm = T)
})
halfbw = ceiling(bw*ncol(distribution)/2)
cl = (selected-cbind(0,selected[,-NCOL(selected), drop = F]))==1
cl = t(apply(cl,1,cumsum))*selected
scl = (sselected-cbind(0,sselected[,-NCOL(sselected), drop = F]))==1
scl = t(apply(scl,1,cumsum))*sselected
ri=1
sselected = sapply(1:nrow(cl),function(ri){
cl_ri = cl[ri,]
scl_ri = scl[ri,]
sclid_ri = unique(scl_ri);sclid_ri=sclid_ri[sclid_ri!=0]
if(length(sclid_ri)==0){
scl_type = NA
}else{
scl_type = sapply(sclid_ri,function(id){
ui = cl_ri[scl_ri == id]
ui = ui[c(TRUE, !ui[-length(ui)] == ui[-1])]
if(length(ui)==1){
if(ui==0){return("alone")}else{
return("inside")
}
}else if(length(ui)==2){
if(ui[1]==0){return("loco")}else{
return("tail")}
}else if(length(ui)==3){
if(length(unique(ui))==2){return("loco_tail")}else{
return("glue")
}
}else(return("glue"))})
}
whichtime = do.call("c",lapply(sclid_ri,function(id){
wid = which(scl_ri==id)
wid = switch(scl_type[id],
glue = {wid},
loco = {
if(length(wid)<=halfbw){integer(0L)}else
(wid[-c(1:halfbw)])
},
tail = {if(length(wid)<=halfbw){integer(0L)}else
(wid[c(1:(length(wid)-halfbw))])
},
loco_tail = {if(length(wid)<= 2*halfbw){integer(0L)}else
(wid[c(halfbw:(length(wid)-halfbw))])
},
{integer(0L)})
wid
}))
return((1:length(scl_ri))%in%whichtime)
})
sselected=t(sselected)
scl = (sselected-cbind(0,sselected[,-NCOL(sselected), drop = F]))==1
scl = t(apply(scl,1,cumsum))*sselected
selected_join <- selected|sselected
cl_join = (selected_join-cbind(0,selected_join[,-NCOL(selected_join), drop = F]))==1
cl_join = t(apply(cl_join,1,cumsum))*selected_join
cl = selected*cl_join
scl = sselected*cl_join
mass_distribution = sapply(1:(dim(selected_join)[1]),function(permi){
max(sapply(1:max(1,max(cl_join[permi,])),function(i_in_p){
aggr_FUN(c(distribution[permi,cl[permi,]==i_in_p],
sdistribution[permi,scl[permi,]==i_in_p]))}))})
mass_statistic = sapply(1:max(1,max(cl_join[1,])), function(i) {
aggr_FUN(c(distribution[1,cl[1,]==i],
sdistribution[1,scl[1,]==i]))
})
pvalue = sapply(mass_statistic, function(mi) permuco:::compute_pvalue(stat = mi,
distribution = mass_distribution, alternative = "two.sided"))
main = cbind(statistic =c(NA, mass_statistic)[cl_join[1, ] + 1],
pvalue = c(NA, pvalue)[cl_join[1, ] + 1],
cluster_id = cl_join[1, ])
statistic = cbind(mean = c(NA, mass_statistic)[cl[1,]+1],slope = c(NA, mass_statistic)[scl[1,]+1])
pvalue = cbind(mean = c(NA, pvalue)[cl[1,]+1],slope = c(NA, pvalue)[scl[1,]+1])
cluster_id = cbind(mean = cl[1,], slope = scl[1,])
main_split = list(statistic = statistic, pvalue = pvalue,
cluster_id = cluster_id)
out = list(main = main, main_split = main_split, distribution = mass_distribution, threshold = threshold)
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.