#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDgumbelInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .ldRecodeOptionsGumbel(options)
#### Show distribution section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("Gumbel distribution"),
parSupportMoments = .ldGumbelParsSupportMoments,
formulaPDF = .ldFormulaGumbelPDF,
formulaCDF = .ldFormulaGumbelCDF,
formulaQF = .ldFormulaGumbelQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillGumbelEstimatesTable)
return()
}
.ldRecodeOptionsGumbel <- function(options){
options[['parValNames']] <- c("mu", "beta")
options[['pars']] <- list(mu = options[['mu']], beta = options[['beta']])
options[['pdfFun']] <- dgumbel
options[['cdfFun']] <- pgumbel
options[['qFun']] <- qgumbel
options[['rFun']] <- rgumbel
options[['distNameInR']] <- "gumbel"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = -Inf, max = Inf)
options$lowerBound <- c(-Inf, 0)
options$upperBound <- c(Inf, Inf)
options$transformations <- c(mu = "mu", beta = "beta")
options
}
### text fill functions -----
.ldGumbelParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("location: μ %s","\u2208 \u211D")
pars[[2]] <- gettextf("scale: %s", "β \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 \u211D"
moments <- list()
moments$expectation <- "μ + βγ"
moments$variance <- "β<sup>2</sup> π<sup>2</sup>/6"
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaGumbelPDF <- function(options){
}
.ldFormulaGumbelCDF <- function(options){
}
.ldFormulaGumbelQF <- function(options){
}
#### Table functions ----
.ldFillGumbelEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
par <- c(location = "\u03BC", scale = "\u03B2")
res <- results$structured
res$parName <- par
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
#### Distribution functions ----
dgumbel <- function(x, mu, beta, log = FALSE) {
z <- (x - mu)/beta
out <- -log(beta) - (z + exp(-z))
if(!log) out <- exp(out)
return(out)
}
pgumbel <- function(q, mu, beta, lower.tail = TRUE, log.p = FALSE) {
z <- (q - mu)/beta
out <- exp(-exp(-z))
if(!lower.tail) out <- 1-out
if(log.p) out <- log(out)
return(out)
}
qgumbel <- function(p, mu, beta, lower.tail = TRUE, log.p = FALSE) {
if(log.p) p <- exp(p)
if(!lower.tail) p <- 1-p
out <- mu - beta * log(-log(p))
return(out)
}
rgumbel <- function(n, mu, beta) {
p <- runif(n)
q <- qgumbel(p, mu, beta)
return(q)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.