#
# Copyright (C) 2013-2020 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
LDnormalGeneralizedInternal <- function(jaspResults, dataset, options, state=NULL){
options <- .recodeOptionsLDNormalGeneralized(options)
#### Show distribution section ----
.ldShowDistribution(jaspResults = jaspResults, options = options, name = gettext("generalized normal distribution"),
parSupportMoments = .ldNormalGeneralizedParsSupportMoments,
formulaPDF = .ldFormulaNormalGeneralizedPDF,
formulaCDF = .ldFormulaNormalGeneralizedCDF,
formulaQF = .ldFormulaNormalGeneralizedQF)
#### Generate and Display data section ----
# simulate and read data
.simulateData(jaspResults, options)
ready <- options[['variable']] != ""
errors <- FALSE
if(ready){
variable <- dataset[[options[['variable']]]]
variable <- variable[!is.na(variable)]
errors <- .hasErrors(dataset, type = c("observations", "variance", "infinity", "limits"),
observations.amount = "<2",
limits.min = options$support$min, limits.max = options$support$max,
exitAnalysisIfErrors = FALSE)
}
# overview of the data
.ldDescriptives(jaspResults, variable, options, ready, errors, "continuous")
#### Fit data and assess fit ----
.ldMLE(jaspResults, variable, options, ready, errors, .ldFillNormalGeneralizedEstimatesTable)
return()
}
### options ----
.recodeOptionsLDNormalGeneralized <- function(options){
options[['parValNames']] <- c("mu", "alpha", "beta")
options[['pars']] <- list(mu = options[['mu']], alpha = options[['alpha']], beta = options[['beta']])
options[['pdfFun']] <- gnorm::dgnorm
options[['cdfFun']] <- gnorm::pgnorm
options[['qFun']] <- gnorm::qgnorm
options[['rFun']] <- gnorm::rgnorm
options[['distNameInR']] <- "gnorm"
options <- .ldOptionsDeterminePlotLimits(options)
options$support <- list(min = -Inf, max = Inf)
options$lowerBound <- c(-Inf, 0, 0)
options$upperBound <- c(Inf, Inf, Inf)
options$transformations <- c(mu = "mu", alpha = "alpha", beta = "beta")
options
}
### text fill functions -----
.ldNormalGeneralizedParsSupportMoments <- function(jaspResults, options){
if(options$parsSupportMoments && is.null(jaspResults[['parsSupportMoments']])){
pars <- list()
pars[[1]] <- gettextf("location: μ %s","\u2208 \u211D")
pars[[2]] <- gettextf("scale: %s", "α \u2208 \u211D<sup>+</sup>")
pars[[3]] <- gettextf("shape: %s", "β \u2208 \u211D<sup>+</sup>")
support <- "x \u2208 \u211D"
moments <- list()
moments$expectation <- "μ"
moments$variance <- gettextf("see Wikipedia: %s", "https://en.wikipedia.org/wiki/Generalized_normal_distribution#Moments")
jaspResults[['parsSupportMoments']] <- .ldParsSupportMoments(pars, support, moments)
}
}
.ldFormulaNormalGeneralizedPDF <- function(options){
}
.ldFormulaNormalGeneralizedCDF <- function(options){
}
.ldFormulaNormalGeneralizedQF <- function(options){
}
#### Table functions ----
.ldFillNormalGeneralizedEstimatesTable <- function(table, results, options, ready){
if(!ready) return()
if(is.null(results)) return()
if(is.null(table)) return()
pars <- c(mu = "\u03BC", alpha = "\u03B1", beta = "\u03B2")
res <- results$structured
res <- res[res$par %in% names(pars),]
res$parName <- pars
if(results$fitdist$convergence != 0){
table$addFootnote(gettext("The optimization did not converge, try adjusting the parameter values."), symbol = gettext("<i>Warning.</i>"))
}
if(!is.null(results$fitdist$optim.message)){
table$addFootnote(results$fitdist$message, symbol = gettext("<i>Warning.</i>"))
}
table$setData(res)
return()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.