#
# Copyright (C) 2013-2021 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
mlClassificationRandomForest <- function(jaspResults, dataset, options, ...) {
# Preparatory work
dataset <- .mlClassificationReadData(dataset, options)
.mlClassificationErrorHandling(dataset, options, type = "randomForest")
# Check if analysis is ready to run
ready <- .mlClassificationReady(options, type = "randomForest")
# Compute results and create the model summary table
.mlClassificationTableSummary(dataset, options, jaspResults, ready, position = 1, type = "randomForest")
# If the user wants to add the classes to the data set
.mlClassificationAddPredictionsToData(dataset, options, jaspResults, ready)
# Add test set indicator to data
.mlAddTestIndicatorToData(options, jaspResults, ready, purpose = "classification")
# Create the data split plot
.mlPlotDataSplit(dataset, options, jaspResults, ready, position = 2, purpose = "classification", type = "randomForest")
# Create the confusion table
.mlClassificationTableConfusion(dataset, options, jaspResults, ready, position = 3)
# Create the class proportions table
.mlClassificationTableProportions(dataset, options, jaspResults, ready, position = 4)
# Create the validation measures table
.mlClassificationTableMetrics(dataset, options, jaspResults, ready, position = 5)
# Create the variable importance table
.mlRandomForestTableFeatureImportance(options, jaspResults, ready, position = 6, purpose = "classification")
# Create the shap table
.mlTableShap(dataset, options, jaspResults, ready, position = 7, purpose = "classification")
# Create the ROC curve
.mlClassificationPlotRoc(dataset, options, jaspResults, ready, position = 8, type = "randomForest")
# Create the Andrews curves
.mlClassificationPlotAndrews(dataset, options, jaspResults, ready, position = 9)
# Create the trees vs model error plot
.mlRandomForestPlotError(options, jaspResults, ready, position = 10, purpose = "classification")
# Create the mean decrease in accuracy plot
.mlRandomForestPlotDecreaseAccuracy(options, jaspResults, ready, position = 11, purpose = "classification")
# Create the total increase in node purity plot
.mlRandomForestPlotIncreasePurity(options, jaspResults, ready, position = 12, purpose = "classification")
# Decision boundaries
.mlClassificationPlotBoundaries(dataset, options, jaspResults, ready, position = 13, type = "randomForest")
}
.randomForestClassification <- function(dataset, options, jaspResults) {
# Set model-specific parameters
noOfPredictors <- switch(options[["noOfPredictors"]],
"manual" = options[["numberOfPredictors"]],
"auto" = floor(sqrt(length(options[["predictors"]])))
)
# Split the data into training and test sets
if (options[["holdoutData"]] == "testSetIndicator" && options[["testSetIndicatorVariable"]] != "") {
# Select observations according to a user-specified indicator (included when indicator = 1)
trainingIndex <- which(dataset[, options[["testSetIndicatorVariable"]]] == 0)
} else {
# Sample a percentage of the total data set
trainingIndex <- sample.int(nrow(dataset), size = ceiling((1 - options[["testDataManual"]]) * nrow(dataset)))
}
trainingAndValidationSet <- dataset[trainingIndex, ]
# Create the generated test set indicator
testIndicatorColumn <- rep(1, nrow(dataset))
testIndicatorColumn[trainingIndex] <- 0
if (options[["modelOptimization"]] == "manual") {
# Just create a train and a test set (no optimization)
trainingSet <- trainingAndValidationSet
testSet <- dataset[-trainingIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
testFit <- randomForest::randomForest(
x = trainingSet[, options[["predictors"]]], y = trainingSet[, options[["target"]]],
xtest = testSet[, options[["predictors"]]], ytest = testSet[, options[["target"]]],
ntree = options[["noOfTrees"]], mtry = noOfPredictors,
sampsize = ceiling(options[["baggingFraction"]] * nrow(trainingSet)),
importance = TRUE, keep.forest = TRUE
)
noOfTrees <- options[["noOfTrees"]]
} else if (options[["modelOptimization"]] == "optimized") {
# Create a train, validation and test set (optimization)
validationIndex <- sample.int(nrow(trainingAndValidationSet), size = ceiling(options[["validationDataManual"]] * nrow(trainingAndValidationSet)))
testSet <- dataset[-trainingIndex, ]
validationSet <- trainingAndValidationSet[validationIndex, ]
trainingSet <- trainingAndValidationSet[-validationIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
# Check for factor levels in the validation set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, validationSet, "validation")
validationFit <- randomForest::randomForest(
x = trainingSet[, options[["predictors"]]], y = trainingSet[, options[["target"]]],
xtest = validationSet[, options[["predictors"]]], ytest = validationSet[, options[["target"]]],
ntree = options[["maxTrees"]], mtry = noOfPredictors,
sampsize = ceiling(options[["baggingFraction"]] * nrow(trainingSet)),
importance = TRUE, keep.forest = TRUE
)
oobAccuracy <- 1 - validationFit[["err.rate"]][, 1]
noOfTrees <- which.max(oobAccuracy)
testFit <- randomForest::randomForest(
x = trainingSet[, options[["predictors"]]], y = trainingSet[, options[["target"]]],
xtest = testSet[, options[["predictors"]]], ytest = testSet[, options[["target"]]],
ntree = noOfTrees, mtry = noOfPredictors,
sampsize = ceiling(options[["baggingFraction"]] * nrow(trainingSet)),
importance = TRUE, keep.forest = TRUE
)
}
# Train a model on the training data
trainingFit <- randomForest::randomForest(
x = trainingSet[, options[["predictors"]]], y = trainingSet[, options[["target"]]],
xtest = trainingSet[, options[["predictors"]]], ytest = trainingSet[, options[["target"]]],
ntree = noOfTrees, mtry = noOfPredictors,
sampsize = ceiling(options[["baggingFraction"]] * nrow(trainingSet)),
importance = TRUE, keep.forest = TRUE
)
# Create results object
result <- list()
result[["model"]] <- testFit
result[["rfit_test"]] <- testFit
result[["rfit_train"]] <- trainingFit
result[["noOfTrees"]] <- noOfTrees
result[["predPerSplit"]] <- noOfPredictors
result[["baggingFraction"]] <- ceiling(options[["baggingFraction"]] * nrow(dataset))
result[["confTable"]] <- table("Pred" = testFit$test[["predicted"]], "Real" = testSet[, options[["target"]]])
result[["testAcc"]] <- sum(diag(prop.table(result[["confTable"]])))
result[["auc"]] <- .classificationCalcAUC(testSet, trainingSet, options, "randomForestClassification", dataset = dataset, noOfTrees = noOfTrees, noOfPredictors = noOfPredictors)
result[["testPred"]] <- testFit$test[["predicted"]]
result[["testReal"]] <- testSet[, options[["target"]]]
result[["ntrain"]] <- nrow(trainingSet)
result[["ntest"]] <- nrow(testSet)
result[["train"]] <- trainingSet
result[["test"]] <- testSet
result[["testIndicatorColumn"]] <- testIndicatorColumn
result[["classes"]] <- predict(testFit, newdata = dataset)
result[["oobAccuracy"]] <- 1 - testFit[["err.rate"]][length(testFit[["err.rate"]])]
result[["varImp"]] <- plyr::arrange(data.frame(
Variable = as.factor(names(testFit[["importance"]][, 1])),
MeanIncrMSE = testFit[["importance"]][, 1],
TotalDecrNodeImp = testFit[["importance"]][, 2]
), -TotalDecrNodeImp)
if (options[["modelOptimization"]] != "manual") {
result[["rfit_valid"]] <- validationFit
result[["validationConfTable"]] <- table("Pred" = validationFit$test[["predicted"]], "Real" = validationSet[, options[["target"]]])
result[["validAcc"]] <- sum(diag(prop.table(result[["validationConfTable"]])))
result[["nvalid"]] <- nrow(validationSet)
result[["valid"]] <- validationSet
result[["oobValidStore"]] <- oobAccuracy
}
result[["explainer"]] <- DALEX::explain(result[["model"]], type = "multiclass", data = result[["train"]], y = result[["train"]][, options[["target"]]] , predict_function = function(model, data) predict(model, newdata = data, type = "prob"))
if (nlevels(result[["testReal"]]) == 2) {
result[["explainer_fi"]] <- DALEX::explain(result[["model"]], type = "classification", data = result[["train"]], y = as.numeric(result[["train"]][, options[["target"]]]) - 1, predict_function = function(model, data) predict(model, newdata = data, type = "response"))
} else {
result[["explainer_fi"]] <- DALEX::explain(result[["model"]], type = "multiclass", data = result[["train"]], y = result[["train"]][, options[["target"]]] , predict_function = function(model, data) predict(model, newdata = data, type = "prob"))
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.