Description Usage Arguments Value Examples
Predict on the random forest.
1 2 3 |
object |
A forest that was previously |
newData |
The new data containing all of the previous predictor
covariates. Can be NULL if you want to use the training dataset, and
|
parallel |
A logical indicating whether multiple cores should be
utilized when making the predictions. Available as an option because it's
been observed that using Java's |
out.of.bag |
A logical indicating whether predictions should be based on
'out of bag' trees; set only to |
... |
Other parameters that may one day get passed onto other functions; currently not used. |
A list of responses corresponding with each row of newData
if
it's a non-regression random forest; otherwise it returns a numeric vector.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | # Regression Example
x1 <- rnorm(1000)
x2 <- rnorm(1000)
y <- 1 + x1 + x2 + rnorm(1000)
data <- data.frame(x1, x2, y)
forest <- train(y ~ x1 + x2, data, ntree=100, numberOfSplits = 5,
mtry = 1, nodeSize = 5)
# Fix x2 to be 0
newData <- data.frame(x1 = seq(from=-2, to=2, by=0.5), x2 = 0)
ypred <- predict(forest, newData)
plot(ypred ~ newData$x1, type="l")
# Competing Risk Example
x1 <- abs(rnorm(1000))
x2 <- abs(rnorm(1000))
T1 <- rexp(1000, rate=x1)
T2 <- rweibull(1000, shape=x1, scale=x2)
C <- rexp(1000)
u <- pmin(T1, T2, C)
delta <- ifelse(u==T1, 1, ifelse(u==T2, 2, 0))
data <- data.frame(x1, x2)
forest <- train(CR_Response(delta, u) ~ x1 + x2, data, ntree=100,
numberOfSplits=5, mtry=1, nodeSize=10)
newData <- data.frame(x1 = c(-1, 0, 1), x2 = 0)
ypred <- predict(forest, newData)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.