unloadNamespace("gam")
.runThisTest <- Sys.getenv("RunAllggeffectsTests") == "yes"
if (.runThisTest && require("testthat") && require("ggeffects") && require("VGAM")) {
d.AD <- data.frame(
treatment = gl(3, 3),
outcome = gl(3, 1, 9),
counts = c(18, 17, 15, 20, 10, 20, 25, 13, 12)
)
m1 <- vglm(counts ~ outcome + treatment, family = poissonff, data = d.AD, trace = TRUE)
test_that("ggpredict", {
p <- ggpredict(m1, "outcome")
expect_equal(p$predicted[1], 21, tolerance = 1e-3)
})
set.seed(123)
N <- 100
X1 <- rnorm(N, 175, 7)
X2 <- rnorm(N, 30, 8)
Ycont <- 0.5 * X1 - 0.3 * X2 + 10 + rnorm(N, 0, 6)
Yord <- cut(
Ycont,
breaks = quantile(Ycont),
include.lowest = TRUE,
labels = c("--", "-", "+", "++"),
ordered = TRUE
)
dfOrd <- data.frame(X1, X2, Yord)
m2 <- vglm(Yord ~ X1 + X2, family = propodds, data = dfOrd)
test_that("ggpredict", {
p <- ggpredict(m2, terms = "X1")
expect_equal(p$predicted[1], 0.2633227, tolerance = 1e-3)
expect_equal(nrow(p), 27)
p <- ggpredict(m2, terms = "X1", ci = NA)
expect_equal(p$predicted[1], 0.7366773, tolerance = 1e-3)
expect_equal(nrow(p), 36)
})
data(pneumo)
pneumo <- transform(pneumo, let = log(exposure.time))
m3 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo)
test_that("ggpredict", {
p <- ggpredict(m3, "let")
expect_equal(p$predicted[1], 0.005992263, tolerance = 1e-3)
expect_equal(nrow(p), 16)
p <- ggpredict(m3, "let", ci = NA)
expect_equal(p$predicted[1], 0.9940077, tolerance = 1e-3)
expect_equal(nrow(p), 24)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.