if (suppressWarnings(
require("testthat") &&
require("ggeffects") &&
require("glmmTMB") &&
require("pscl")
)) {
data(Salamanders)
m1 <- zeroinfl(count ~ mined | mined, dist = "poisson", data = Salamanders)
m2 <- hurdle(count ~ mined | mined, dist = "poisson", zero.dist = "poisson", data = Salamanders)
m3 <- hurdle(count ~ mined | mined, dist = "poisson", zero.dist = "binomial", data = Salamanders)
m4 <- hurdle(count ~ mined | mined, dist = "poisson", zero.dist = "binomial", link = "log", data = Salamanders)
m5 <- suppressWarnings(zeroinfl(count ~ mined | mined, dist = "negbin", link = "log", data = Salamanders))
test_that("ggpredict, pscl", {
expect_s3_class(ggpredict(m1, "mined", type = "fe"), "data.frame")
expect_s3_class(ggpredict(m1, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggpredict(m2, "mined", type = "fe"), "data.frame")
expect_s3_class(ggpredict(m2, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggpredict(m3, "mined", type = "fe"), "data.frame")
expect_s3_class(ggpredict(m3, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggpredict(m4, "mined", type = "fe"), "data.frame")
expect_s3_class(ggpredict(m4, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggpredict(m5, "mined", type = "fe"), "data.frame")
expect_s3_class(ggpredict(m5, "mined", type = "fe.zi"), "data.frame")
})
test_that("ggpredict, pscl", {
skip_on_cran()
set.seed(123)
pr <- ggpredict(m1, "mined", type = "fe.zi")
expect_equal(pr$conf.low, c(0.1731, 2.0172), tolerance = 1e-3)
model <- zeroinfl(count ~ mined * spp | mined * spp, dist = "poisson", data = Salamanders)
set.seed(123)
pr <- ggpredict(model, c("mined", "spp"), type = "fe.zi")
expect_equal(
pr$conf.low,
c(0, 0, 0.03704, 1e-05, 1e-05, 0.14815, 0.13418, 1.61886,
0.04808, 1.81329, 0.48571, 3.07055, 3.1093, 1.33136),
tolerance = 1e-2
)
})
test_that("ggemmeans, pscl", {
expect_s3_class(ggemmeans(m1, "mined", type = "fe"), "data.frame")
expect_s3_class(ggemmeans(m1, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggemmeans(m2, "mined", type = "fe"), "data.frame")
expect_s3_class(ggemmeans(m2, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggemmeans(m3, "mined", type = "fe"), "data.frame")
expect_s3_class(ggemmeans(m3, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggemmeans(m4, "mined", type = "fe"), "data.frame")
expect_s3_class(ggemmeans(m4, "mined", type = "fe.zi"), "data.frame")
expect_s3_class(ggemmeans(m5, "mined", type = "fe"), "data.frame")
expect_s3_class(ggemmeans(m5, "mined", type = "fe.zi"), "data.frame")
})
test_that("compare, pscl", {
p1 <- ggemmeans(m1, "mined", type = "fe")
p2 <- ggpredict(m1, "mined", type = "fe")
expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3)
p1 <- ggemmeans(m1, "mined", type = "fe.zi")
p2 <- ggpredict(m1, "mined", type = "fe.zi")
expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3)
p1 <- ggemmeans(m2, "mined", type = "fe")
p2 <- ggpredict(m2, "mined", type = "fe")
expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3)
p1 <- ggemmeans(m2, "mined", type = "fe.zi")
p2 <- ggpredict(m2, "mined", type = "fe.zi")
expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3)
p1 <- ggemmeans(m5, "mined", type = "fe")
p2 <- ggpredict(m5, "mined", type = "fe")
expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3)
p1 <- ggemmeans(m5, "mined", type = "fe.zi")
p2 <- ggpredict(m5, "mined", type = "fe.zi")
expect_equal(p1$predicted[1], p2$predicted[1], tolerance = 1e-3)
})
#Generate some data
set.seed(123)
N <- 100 #Samples
x <- runif(N, 0, 5) #Predictor 1
z <- runif(N, 0, 5) #Predictor 2
off <- rgamma(N, 3, 2) #Offset variable
yhat <- -1 + x * 0.2 + z * -0.2 + z * x * 0.2 + log(off) #Prediction on log scale
dat <- data.frame(y = NA, x,z, logOff = log(off)) #Storage dataframe
dat$y <- rpois(N, exp(yhat)) #Poisson process
dat$y <- ifelse(rbinom(N, 1, 0.3), 0, dat$y) #Zero-inflation process
#Fit zeroinfl and glm model
#Interaction b/w x and z
model <- zeroinfl(y ~ offset(logOff) + x * z | 1, data = dat, dist = 'poisson')
test_that("pscl, offset, interaction and CI", {
pr <- ggpredict(model, c("x", "z"))
expect_equal(
pr$conf.low,
c(0.10175, 0.10842, 0.07738, 0.15311, 0.17543, 0.14137, 0.2299,
0.28352, 0.25811, 0.34404, 0.45742, 0.47084, 0.51189, 0.73575,
0.85762, 0.75364, 1.17695, 1.55786, 1.08708, 1.86238, 2.81383,
1.51007, 2.8848, 5.01418, 1.9918, 4.32397, 8.65455, 2.51388,
6.28353, 14.25571, 3.09229, 8.96366, 22.76232),
tolerance = 1e-3
)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.