Description Usage Arguments Details Value Examples
Run Q-Gen (generalized QuSAGE) algorithm using gene level statistics
1 |
model.results |
object returned by |
gene.sets |
list of gene sets. See |
annotations |
A data frame of additional annotations for the gene sets.
See |
This function takes the gene level comparison estimates and test
statistics contained in the object returned by
genModelResults
and runs the Q-Gen algorithm across all of
the comparisons. The VIFs are estimated using the raw residuals, which are
also contained in the output of genModelResults
.
qusage.results
Tall formatted matrix of results
lower.ci
Matrix of gene level lower 95% confidence intervals
upper.ci
Matrix gene level upper 95% confidence intervals
gene.sets
List of gene sets provided to gene.sets
annotations
data frame of gene set annotations. Default is
NULL.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # Example data
data(tb.expr)
data(tb.design)
# Use first 100 probes to demonstrate
dat <- tb.expr[1:100,]
# Create desInfo object
meta.data <- metaData(y = dat, design = tb.design, data.type = "microarray",
columnname = "columnname", long = TRUE, subject.id = "monkey_id",
baseline.var = "timepoint", baseline.val = 0, time.var = "timepoint",
sample.id = "sample_id")
# Generate lmFit and eBayes (limma) objects needed for genModelResults
tb.design$Group <- paste(tb.design$clinical_status,tb.design$timepoint, sep = "")
grp <- factor(tb.design$Group)
design2 <- model.matrix(~0+grp)
colnames(design2) <- levels(grp)
dupcor <- limma::duplicateCorrelation(dat, design2, block = tb.design$monkey_id)
fit <- limma::lmFit(dat, design2, block = tb.design$monkey_id,
correlation = dupcor$consensus.correlation)
contrasts <- limma::makeContrasts(A_20vsPre = Active20-Active0, A_42vsPre = Active42-Active0,
levels=design2)
fit2 <- limma::contrasts.fit(fit, contrasts)
fit2 <- limma::eBayes(fit2, trend = FALSE)
# Create model results object for runQgen
model.results <- genModelResults(y = dat, data.type = "microarray", object = fit2, lm.Fit = fit,
method = "limma")
# Run Q-Gen on baylor modules
data(modules)
qus.results <- runQgen(model.results, modules)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.