View source: R/icaodOptDesign.R
td_opt | R Documentation |
If prior knowledge on the (rough) model shape is available, an optimal experimental design for a td2pLL model can be calculated. The numerical back bone is the Imperialist Competitive Algorithm implemented by Masoudi et al (2017).
td_opt( param, Emax_known = FALSE, lx = c(1, exp(-8)), ux = c(10, 1), iter = 1000, ICA.control = NULL )
param |
( |
Emax_known |
( |
lx |
( |
ux |
( |
iter |
( |
ICA.control |
( |
An object of class minimax
generated with locally()
.
For Emax_known
= TRUE
, the design has 7 support points. Otherwise,
it has 8.
td_opt_1 <- td_opt(param = c(h = 2, delta = 0.2, gamma = 1.3, c0 = 0.2), Emax_known = TRUE, ICA.control = list(ncount = 300, rseed = 1905, trace = FALSE), iter = 600) td_opt_1 plot_td_des(td_opt_1) plot_td_dcrit_equ(td_opt_1) td_opt_2 <- td_opt(param = c(h = 2, delta = 0.2, gamma = 1.3, c0 = 0.2), Emax_known = FALSE, ICA.control = list(ncount = 300, rseed = 1905, revol_rate = 0.5, trace = FALSE), iter = 600) td_opt_2 plot_td_des(td_opt_2) plot_td_dcrit_equ(td_opt_2) td_opt_3 <- td_opt(param = c(h = 1, delta = 0.5, gamma = 2, c0 = 0.01), Emax_known = TRUE, ICA.control = list(ncount = 300, rseed = 1905, trace = FALSE), iter = 1000) plot_td_des(td_opt_3) plot_td_dcrit_equ(td_opt_3, plot_theta = 100, n_grid = 100, dose_lim = c(0, 0.2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.