SimulateData: Simulate p-values and the auxiliary covariate under various...

Description Usage Arguments Value Author(s) References

Description

The function simulates p-values and the auxiliary covariate under different signal structures (density and strength) and covariate informativeness.

Usage

1
2
3
4
5
6
7
SimulateData(
  prior.strength = c("Weak", "Moderate", "Strong"),
  feature.no = 10000,
  sig.dist = c("Normal", "Gamma"),
  sig.density = c("None", "Lower", "Low", "Medium", "High"),
  sig.strength = c("Weak", "Moderate", "Strong")
)

Arguments

prior.strength

a character string from 'Weak', 'Moderate', 'Strong' indicating the covariate informativeness.

feature.no

an integer, the number of features to be simulated.

sig.dist

a character string from 'Normal', 'Gamma' indicating the distribution of the z-value under the alternative.

sig.density

a character string from 'None', 'Lower', 'Low', 'Medium', 'High' indicating the level of the signal density.

sig.strength

a character string from 'Weak', 'Moderate', 'Strong' indicating the level of the signal strength.

Value

A list with the elements

pvalue

a numeric vector of p-values.

prior

a vector of covariate values reflecting the order of the prior null probabilities.

truth

a vector of logical values indicating H0 (=0) or H1 (=1).

Author(s)

Jun Chen

References

Hongyuan Cao, Jun Chen, Xianyang Zhang. Optimal false discovery rate control for large-scale multiple testing with auxiliary information. Submitted.


jchen1981/OrderShapeEM documentation built on March 9, 2021, 12:19 a.m.