library(JMDplots) library(knitr) ## use pngquant to reduce size of PNG images knit_hooks$set(pngquant = hook_pngquant) pngquant <- "--speed=1 --quality=0-25" # in case pngquant isn't available (R-Forge?) if (!nzchar(Sys.which("pngquant"))) pngquant <- NULL
This vignette from the R package JMDplots version r packageDescription("JMDplots")$Version
shows chemical metrics for proteins that are differentially expressed in cancer compared to normal tissue (data from The Human Protein Atlas).
The analysis is described in more detail in a paper (Dick, 2021).
Abbreviations:
options(width = 90)
datasets <- pdat_HPA()
pdat1 <- lapply(datasets, pdat_HPA) comptab1 <- lapply(pdat1, get_comptab) comptab2 <- lapply(pdat1, get_comptab, "nAA", "MW")
Differences are calculated as (median value for up-regulated proteins) - (median value for down-regulated proteins). Dashed lines enclose the 50% credible region for highest probability density.
par(mar = c(4, 4, 1, 1)) diffplot(comptab1, labtext = NA)
In the table, values of ΔZC and ΔnH2O are multiplied by 1000, values of ΔMW are multiplied by 100, and negative values are shown in bold. Abbreviations:
library(xtable) out <- xsummary2(comptab1, comptab2) # round values and include dataset tags tags <- sapply(sapply(strsplit(datasets, "="), "[", -1), paste, collapse = ";") out <- cbind(out[, 1:2], tags = tags, out[, 3:16]) out[, 6:17] <- round(out[, 6:17], 4) file <- paste0("HPA.csv") write.csv(out, file, row.names = FALSE, quote = 2)
a. – r. Human Protein Atlas [@UFH+15].
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.