Description Usage Arguments Details Value Author(s) References See Also Examples
Similar to other predict methods, this functions predicts fitted values, logits,
coefficients and more from a fitted "glmnet" object.
1 2 3 4 5 |
object |
Fitted |
newx |
Matrix of new values for |
s |
Value(s) of the penalty parameter |
type |
Type of prediction required. Type |
exact |
If |
offset |
If an offset is used in the fit, then one must be
supplied for making predictions (except for
|
... |
Not used. Other arguments to predict. |
The shape of the objects returned are different for
"multinomial" objects. This function actually calls
NextMethod(),
and the appropriate predict method is invoked for each of the three
model types. coef(...) is equivalent to predict(type="coefficients",...)
The object returned depends on type.
Jerome Friedman, Trevor Hastie and Rob Tibshirani
Maintainer: Trevor Hastie <hastie@stanford.edu>
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent, http://www.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
http://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011)
Regularization Paths for Cox's Proportional Hazards Model via
Coordinate Descent, Journal of Statistical Software, Vol. 39(5)
1-13
http://www.jstatsoft.org/v39/i05/
glmnet, and print, and coef methods, and cv.glmnet.
1 2 3 4 5 6 7 8 9 10 11 12 | x=matrix(rnorm(100*20),100,20)
y=rnorm(100)
g2=sample(1:2,100,replace=TRUE)
g4=sample(1:4,100,replace=TRUE)
fit1=glmnet(x,y)
predict(fit1,newx=x[1:5,],s=c(0.01,0.005))
predict(fit1,type="coef")
fit2=glmnet(x,g2,family="binomial")
predict(fit2,type="response",newx=x[2:5,])
predict(fit2,type="nonzero")
fit3=glmnet(x,g4,family="multinomial")
predict(fit3,newx=x[1:3,],type="response",s=0.01)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.