Description Usage Arguments Details Value Syntax Operations par.label Line breaks Comments Author(s) References See Also Examples
View source: R/Eq2Expectations.R
Converts equations to expectations.
The argument eq
is a character string
that specifies the associations between the variables.
See Syntax
, Operations
, par.label
,
Line breaks
, and Comments
below.
1 2 3 4 5 6 7 8 |
eq |
Character string. Equations. See Details. |
par |
Logical.
If |
check |
Logical.
If |
R |
Logical.
If |
format |
Character string.
Only used when |
simplify |
Logical. Simplify symbolic results. |
The vector of expected values \mathbf{v} as a function of Reticular Action Model (RAM) matrices is given by
\mathbf{v} = ≤ft( \mathbf{I} - \mathbf{A} \right)^{\mathsf{T}} \mathbf{u} \\ = \mathbf{E} \mathbf{u}
The vector of expected values of observed variables \mathbf{g} as a function of Reticular Action Model (RAM) matrices is given by
\mathbf{g} = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{\mathsf{T}} \mathbf{u} \\ = \mathbf{F} \mathbf{E} \mathbf{u} \\ = \mathbf{F} \mathbf{v}
The matrix of covariance expectations \mathbf{C} as a function of Reticular Action Model (RAM) matrices is given by
\mathbf{C} = ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} ≤ft[ ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \\ = \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}}
The matrix of covariance expectations for given variables \mathbf{M} as a function of Reticular Action Model (RAM) matrices is given by
\mathbf{M} = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} ≤ft[ ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \\ = \mathbf{F} \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \\ = \mathbf{F} \mathbf{C} \mathbf{F}^{\mathsf{T}}
The matrix of scaled/standardized covariance expectations \mathbf{C}_{\mathrm{scaled}} (also known as correlations) is given by
\mathbf{C}_{\mathrm{scaled}} = \mathbf{D}^{-1} \mathbf{C} \mathbf{D}^{-1}
The matrix of scaled/standardized covariance expectations for given variables \mathbf{M}_{\mathrm{scaled}} (also known as correlations) is given by
\mathbf{M}_{\mathrm{scaled}} = \mathbf{F} \mathbf{C}_{\mathrm{scaled}} \mathbf{F}^{\mathsf{T}}
where
\mathbf{u}_{t \times 1} vector of parameters for the mean structure,
\mathbf{A}_{t \times t} represents asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings,
\mathbf{S}_{t \times t} represents symmetric paths (double-headed arrows), such as variances and covariances,
\mathbf{F}_{p \times t} represents the filter matrix used to select the observed variables,
\mathbf{I}_{t \times t} represents an identity matrix,
\mathbf{D}_{t \times t} represents a diagonal matrix who diagonal elements are the square root of the diagonal elements of \mathbf{C},
p number of observed variables,
q number of latent variables, and
t number of observed and latent variables, that is p + q .
Returns a list with the following elements
Parameter table.
Variable names.
Variable names of observed variables.
Variable names of latent variables.
t by t
matrix \mathbf{A}.
Asymmetric paths (single-headed arrows),
such as regression coefficients and factor loadings.
t by t
numeric matrix \mathbf{S}.
Symmetric paths (double-headed arrows),
such as variances and covariances.
t by 1
matrix \mathbf{u} of mean structure parameters.
p by t
numeric matrix
\mathbf{F}.
Filter matrix used to select observed variables.
t by 1
matrix \mathbf{v}
of expected values.
p by 1
matrix \mathbf{g}
of expected values of observed variables.
t by t
matrix \mathbf{C}
of expected covariances.
p by p
matrix \mathbf{M}
of expected covariances of observed variables.
Each line should follow the syntax below
lhs <space> op <space> rhs <space> par.label <\n> or <;>
is the variable on the left-hand side,
is the variable on the right-hand side,
is the operation between lhs
and rhs
,
is the column of parameter label,
are line breaks. Each line should end with a line break.
The associations are defined by the following operations
left-hand side
measured by right-hand side
,
left-hand side
regressed on right-hand side
,
left-hand side
covarying with right-hand side
,
left-hand side
regressed on 1 for mean structure.
Each parameter should be labeled.
The par.label
should be a number for fixed parameters
and a character string for free parameters.
Equality contraints can be imposed by using the same par.label
.
The characters \n
and ;
can be used as line breaks.
Each line should end with a line break.
Comments can be written after a hash (#
) sign.
Ivan Jacob Agaloos Pesigan
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234–251. https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
Other eq functions:
Eq2RAM()
,
EqParse()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | # Numerical ---------------------------------------------------------
eq <- "
# lhs op rhs par.label
e by y 1
y on x 1
e with e 1
x with x 0.25
y on 1 0
x on 1 0.50
"
Eq2Expectations(eq)
# Symbolic ----------------------------------------------------------
eq <- "
# lhs op rhs par.label
e by y 1
y on x beta
e with e sigmae2
x with x sigmax2
y on 1 alpha
x on 1 mux
"
Eq2Expectations(eq, par = FALSE)
Eq2Expectations(eq, par = TRUE)
# Expressions using `par.label`
beta <- 1
sigmae2 <- 1
sigmax2 <- 0.25
alpha <- 0
mux <- 0.50
Exp <- Eq2Expectations(eq, par = FALSE, R = TRUE)
eval(Exp$M)
eval(Exp$g)
# Expressions using `par.index`
p <- c(beta, sigmae2, sigmax2, alpha, mux)
p1 <- p[1]
p2 <- p[2]
p3 <- p[3]
p4 <- p[4]
p5 <- p[5]
Exp <- Eq2Expectations(eq, par = TRUE, R = TRUE)
eval(Exp$M)
eval(Exp$g)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.