Expectations: Expectations from the Reticular Action Model (RAM) Matrices

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/Expectations.R

Description

Derives the mean and covariance expectations from the Reticular Action Model (RAM) matrices.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
Expectations(A, S, u = NULL, Filter = NULL, check = TRUE, ...)

## Default S3 method:
Expectations(A, S, u = NULL, Filter = NULL, check = TRUE, ...)

## S3 method for class 'yac_symbol'
Expectations(
  A,
  S,
  u = NULL,
  Filter = NULL,
  check = TRUE,
  R = FALSE,
  format = "ysym",
  simplify = FALSE,
  ...
)

Arguments

A

t by t matrix \mathbf{A}. Asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings.

S

t by t numeric matrix \mathbf{S}. Symmetric paths (double-headed arrows), such as variances and covariances.

u

vector of length t or t by 1 matrix. Mean structure parameters.

Filter

p by t numeric matrix \mathbf{F}. Filter matrix used to select observed variables.

check

Logical. If check = TRUE do some preprocessing with input matrices using CheckRAMMatrices().

...

...

R

Logical. If R = TRUE, returns symbolic result as an R expression. If R = FALSE, returns symbolic result as "ysym", "str", or "tex" depending of format.

format

Character string. Only used when R = FALSE. If format = "ysym", returns symbolic result as yac_symbol. If format = "str", returns symbolic result as a characetr string. If format = "tex", returns symbolic result as LaTeX math.

simplify

Logical. Simplify symbolic results.

Details

The vector of expected values \mathbf{v} as a function of Reticular Action Model (RAM) matrices is given by

\mathbf{v} = ≤ft( \mathbf{I} - \mathbf{A} \right)^{\mathsf{T}} \mathbf{u} \\ = \mathbf{E} \mathbf{u}

The vector of expected values of observed variables \mathbf{g} as a function of Reticular Action Model (RAM) matrices is given by

\mathbf{g} = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{\mathsf{T}} \mathbf{u} \\ = \mathbf{F} \mathbf{E} \mathbf{u} \\ = \mathbf{F} \mathbf{v}

The matrix of covariance expectations \mathbf{C} as a function of Reticular Action Model (RAM) matrices is given by

\mathbf{C} = ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} ≤ft[ ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \\ = \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}}

The matrix of covariance expectations for given variables \mathbf{M} as a function of Reticular Action Model (RAM) matrices is given by

\mathbf{M} = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} ≤ft[ ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \\ = \mathbf{F} \mathbf{E} \mathbf{S} \mathbf{E}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \\ = \mathbf{F} \mathbf{C} \mathbf{F}^{\mathsf{T}}

The matrix of scaled/standardized covariance expectations \mathbf{C}_{\mathrm{scaled}} (also known as correlations) is given by

\mathbf{C}_{\mathrm{scaled}} = \mathbf{D}^{-1} \mathbf{C} \mathbf{D}^{-1}

The matrix of scaled/standardized covariance expectations for given variables \mathbf{M}_{\mathrm{scaled}} (also known as correlations) is given by

\mathbf{M}_{\mathrm{scaled}} = \mathbf{F} \mathbf{C}_{\mathrm{scaled}} \mathbf{F}^{\mathsf{T}}

where

Value

Returns a list with the following elements

v

t by 1 matrix \mathbf{v} of expected values.

g

p by 1 matrix \mathbf{g} of expected values of observed variables.

C

t by t matrix \mathbf{C} of expected covariances.

M

p by p matrix \mathbf{M} of expected covariances of observed variables.

C.scaled

t by t matrix \mathbf{C} of scaled/standardized expected covariances (also known as correlations).

M.scaled

p by p matrix \mathbf{M} of scaled/standardized expected covariances (also known as correlations) of observed variables.

Author(s)

Ivan Jacob Agaloos Pesigan

References

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234–251. https://doi.org/10.1111/j.2044-8317.1984.tb00802.x

See Also

Other RAM matrices functions: C(), E(), IminusA(), M(), RAMScaled(), S(), g(), u(), v()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# This is a numerical example for the model
# y = alpha + beta * x + e
# y = 0 + 1 * x + e

# Numeric -----------------------------------------------------------
A <- S <- matrixR::ZeroMatrix(3)
A[1, ] <- c(0, 1, 1)
diag(S) <- c(0, 0.25, 1)
colnames(A) <- rownames(A) <- c("y", "x", "e")
u <- c(0.00, 0.50, 0.00)
Filter <- diag(2)
Filter <- cbind(Filter, 0)
colnames(Filter) <- c("y", "x", "e")
Expectations(A, S, u, Filter)

# Symbolic ----------------------------------------------------------
A <- S <- matrixR::ZeroMatrix(3)
A[1, ] <- c(0, "beta", 1)
diag(S) <- c(0, "sigmax2", "sigmae2")
u <- c("alpha", "mux", 0)
Expectations(Ryacas::ysym(A), S, u, Filter, R = FALSE, format = "ysym")
Expectations(Ryacas::ysym(A), S, u, Filter, R = FALSE, format = "str")
Expectations(Ryacas::ysym(A), S, u, Filter, R = FALSE, format = "tex")
Expectations(Ryacas::ysym(A), S, u, Filter, R = TRUE)

# Assigning values to symbols

alpha <- 0
beta <- 1
sigmax2 <- 0.25
sigmae2 <- 1
mux <- 0.50

Expectations(Ryacas::ysym(A), S, u, Filter, R = FALSE, format = "ysym")
Expectations(Ryacas::ysym(A), S, u, Filter, R = FALSE, format = "str")
Expectations(Ryacas::ysym(A), S, u, Filter, R = FALSE, format = "tex")
(Expectations <- Expectations(Ryacas::ysym(A), S, u, Filter, R = TRUE))
eval(Expectations$v)
eval(Expectations$g)
eval(Expectations$C)
eval(Expectations$M)
eval(Expectations$C.scaled)
eval(Expectations$M.scaled)

jeksterslab/ramR documentation built on March 14, 2021, 9:38 a.m.