Description Usage Arguments Details Value Author(s) References See Also Examples
Generates an n \times k multivariate data matrix
or a list of n \times k multivariate data matrices of length R
from the multivariate normal distribution
\mathbf{X} \sim \mathcal{N}_{k} ≤ft( \boldsymbol{μ}, \boldsymbol{Σ} \right) . %(\#eq:dist-X-mvn)
The model-implied matrices used to generate data is derived from the Reticular Action Model (RAM) Matrices.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
n |
Integer. Sample size. |
mu |
Numeric vector. Location parameter mean vector \boldsymbol{μ} of length k. |
M |
Numeric vector. Mean structure. Vector of means and intercepts. |
A |
\mathbf{A} matrix. Asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings. |
S |
\mathbf{S} matrix. Symmetric paths (double-headed arrows), such as variances and covariances. |
F |
\mathbf{F} matrix. Filter matrix used to select the observed variables. |
I |
\mathbf{I} matrix. Identity matrix. |
tol |
Numeric.
Tolerance (relative to largest variance)
for numerical lack of positive-definiteness in |
empirical |
Logical.
If |
df |
Logical.
If |
varnames |
Character string.
Optional column names with the same length as |
R |
Integer.
Number of Monte Carlo replications. If |
par |
Logical.
If |
ncores |
Integer.
Number of cores to use if |
mc |
Logical.
If |
lb |
Logical.
If |
cl_eval |
Logical.
Execute |
cl_export |
Logical.
Execute |
cl_expr |
Expression.
Expression passed to |
cl_vars |
Character vector.
Names of objects to pass to |
The multivariate normal distribution has two parameters,
namely the k \times 1 mean vector
mu
≤ft( \boldsymbol{μ} \right)
and the k \times k variance-covariance matrix
Sigma
≤ft( \boldsymbol{Σ} \right).
The mean vector mu
can be supplied directly using the mu
argument.
It can also be derived using M
.
Note that the argument mu
takes precedence over M
.
If mu
is not provided, it is computed using M
with the jeksterslabRsem::ram_mutheta()
function.
If both mu
and M
are not provided,
mu
is set to a vector of zeroes with the appropriate length.
The variance-covariance matrix Sigma
is derived
from the RAM matrices A
, S
, F
, and I
.
mu
and Sigma
are then used by the mvn()
function
to generate multivariate normal data.
Options for explicit parallelism are provided when R > 1
especially when R
is large. See par
and suceeding arguments.
If R = NULL
or R = 1
, returns an n \times k
multivariate normal data matrix or data frame .
If R
is an integer greater than 1, (e.g., R = 10
)
returns a list of length R
of n \times k
multivariate normal data matrix or data frame.
Ivan Jacob Agaloos Pesigan
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225–273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234–251.
jeksterslabRsem::ram_Sigmatheta()
, and jeksterslabRsem::ram_mutheta()
for more information on the Reticular Action Model (RAM)
and mvn()
for multivariate normal data generation.
Other multivariate data functions:
mvnramsigma2()
,
mvn()
1 2 3 4 5 6 7 8 9 10 | mu <- c(100, 100, 100)
A <- matrix(
data = c(0, sqrt(0.26), 0, 0, 0, sqrt(0.26), 0, 0, 0),
ncol = 3
)
S <- diag(c(225, 166.5, 116.5))
F <- I <- diag(3)
X <- mvnram(n = 100, mu = mu, A = A, S = S, F = F, I = I)
Xstar <- mvnram(n = 100, mu = mu, A = A, S = S, F = F, I = I, R = 100)
str(Xstar, list.len = 6)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.