library(tidyverse)
load("auxiliary/score-test-simulation-results.Rdata")
results_agg <-
results %>%
gather("rate","reject", starts_with("reject_")) %>%
mutate(rate = str_sub(rate, -3, -1)) %>%
group_by(studies, n_factor, mean_effect, sd_effect, p_thresholds, p_RR, type, info, prior_mass, rate) %>%
summarise(
replicates = n(),
reps = sum(reps),
pct_all_sig = mean(pct_all_sig),
reject = weighted.mean(reject, w = 1 - pct_NA),
pct_NA = mean(pct_NA)
) %>%
ungroup() %>%
select(-n_factor, -p_thresholds, -p_RR, -reps) %>%
mutate(type_info = paste(type, info, prior_mass, sep = "-"))
# percentage of NA results
results_agg %>%
filter(rate == "050", type != "subscore") %>%
ggplot(aes(mean_effect, pct_NA, color = type_info, linetype = type_info)) +
geom_point() + geom_line() +
expand_limits(y = 0) +
facet_grid(studies ~ sd_effect, scales = "free_y", labeller = "label_both") +
theme_light()
# percentage of all significant datasets
results_agg %>%
filter(rate == "050", type == "parametric", info == "expected", !is.na(pct_all_sig)) %>%
ggplot(aes(mean_effect, pct_all_sig, color = factor(studies))) +
geom_point() + geom_line() +
expand_limits(y = 0) +
facet_wrap( ~ sd_effect, labeller = "label_both") +
theme_light() +
labs(x = "Mean effect size",
y = "Percentage of datasets with all sig. results",
color = "Number of studies")
plot_rejection_rates <- function(dat, scales = "free_y") {
rate <- as.numeric(unique(dat$rate)) / 1000
ggplot(dat, aes(mean_effect, reject, color = type_info, linetype = type_info, shape = type_info)) +
geom_point() + geom_line() +
scale_color_brewer(type = "qual", palette = 6) +
expand_limits(y = 0) +
geom_hline(yintercept = rate) +
facet_grid(studies ~ sd_effect, scales = scales, labeller = "label_both") +
labs(x = "Mean effect size", y = "Rejection rate",
color = "", linetype = "", shape = "") +
theme_light() +
theme(
strip.text = element_text(color = "black"),
legend.position = "bottom"
)
}
# rejection rates at alpha = .025
results_agg %>%
filter(rate == "025", info == "expected") %>%
plot_rejection_rates()
# rejection rates at alpha = .05
results_agg %>%
filter(rate == "050") %>%
plot_rejection_rates()
results_agg %>%
filter(rate == "050", info == "expected") %>%
plot_rejection_rates()
results_agg %>%
filter(rate == "050", info == "expected", type == "robust") %>%
plot_rejection_rates()
# rejection rates at alpha = .10
results_agg %>%
filter(rate == "100") %>%
plot_rejection_rates()
results_agg %>%
filter(rate == "100", info == "expected") %>%
plot_rejection_rates()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.