rm(list=ls())
library(ggplot2)
library(ggthemes)
setmytheme()
nrepeats <- 2^10
default_stepsize <- 0.01
exclude_default_stepsize <- TRUE
# dimension 10 x 10
load("inst/coxprocess/results/gibbsflow_integration_100.RData")
if (exclude_default_stepsize){
non_default <- (min_stepsize != default_stepsize)
total_non_default <- sum(non_default)
min.stepsize.df <- data.frame(minstepsize = min_stepsize[non_default],
dimension = factor(rep(100, total_non_default)))
cat("Dimension:", 100, "Percentage of non-default stepsizes:", total_non_default / nrepeats * 100, "%\n")
} else {
min.stepsize.df <- data.frame(minstepsize = min_stepsize,
dimension = factor(rep(100, nrepeats)))
}
total.nsteps.df <- data.frame(timesteps = total_nsteps,
dimension = factor(rep(100, nrepeats)))
# dimension 15 x 15
load("inst/coxprocess/results/gibbsflow_integration_225.RData")
if (exclude_default_stepsize){
non_default <- (min_stepsize != default_stepsize)
total_non_default <- sum(non_default)
min.stepsize.df <- rbind(min.stepsize.df, data.frame(minstepsize = min_stepsize[non_default],
dimension = factor(rep(225, total_non_default))))
cat("Dimension:", 225, "Percentage of non-default stepsizes:", total_non_default / nrepeats * 100, "%\n")
} else {
min.stepsize.df <- rbind(min.stepsize.df, data.frame(minstepsize = min_stepsize,
dimension = factor(rep(225, nrepeats))))
}
total.nsteps.df <- rbind(total.nsteps.df, data.frame(timesteps = total_nsteps,
dimension = factor(rep(225, nrepeats))))
# dimension 20 x 20
load("inst/coxprocess/results/gibbsflow_integration_400.RData")
if (exclude_default_stepsize){
non_default <- (min_stepsize != default_stepsize)
total_non_default <- sum(non_default)
min.stepsize.df <- rbind(min.stepsize.df, data.frame(minstepsize = min_stepsize[non_default],
dimension = factor(rep(400, total_non_default))))
cat("Dimension:", 400, "Percentage of non-default stepsizes:", total_non_default / nrepeats * 100, "%\n")
} else {
min.stepsize.df <- rbind(min.stepsize.df, data.frame(minstepsize = min_stepsize,
dimension = factor(rep(400, nrepeats))))
}
total.nsteps.df <- rbind(total.nsteps.df, data.frame(timesteps = total_nsteps,
dimension = factor(rep(400, nrepeats))))
# plot minimum step size against observation
gminstepsize <- ggplot(data = min.stepsize.df, aes(x = dimension, y = minstepsize)) + geom_boxplot() + scale_y_log10() +
xlab("dimension") + ylab("minimum stepsize")
gminstepsize
ggsave(filename = "~/Dropbox/GibbsFlow/draft_v3/coxprocess_minstepsize_dim.eps", plot = gminstepsize,
device = "eps", width = 6, height = 6)
# plot no. of time steps against observation
gtimesteps <- ggplot(data = total.nsteps.df, aes(x = dimension, y = timesteps)) + geom_boxplot() +
xlab("dimension") + ylab("time steps")
gtimesteps
ggsave(filename = "~/Dropbox/GibbsFlow/draft_v3/coxprocess_timesteps_dim.eps", plot = gtimesteps,
device = "eps", width = 6, height = 6)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.