context("Train and predict with X_unpenalized argument will not error.")
set.seed(1234)
n <- 100
x <- rnorm(n)
a <- rnorm(n)
y <- 2 * x + 5 * a + rnorm(n)
hal_fit <- fit_hal(
X = as.matrix(x),
Y = y,
X_unpenalized = as.matrix(a),
fit_control = list(use_min = TRUE, cv_select = FALSE),
yolo = FALSE,
family = "gaussian",
lambda = 2e-2,
return_lasso = TRUE
)
beta_hat <- hal_fit$coefs[, 1]
test_that("Training: The coefficient is not penalized heavily.", {
expect_true(
all.equal(tail(beta_hat, 1), 5, tolerance = 0.1, check.attributes = FALSE)
)
})
test_that("Training: input is not a matrix.", {
expect_error(fit_hal(
X = x,
Y = y,
X_unpenalized = a,
fit_control = list(use_min = TRUE, cv_select = FALSE),
yolo = FALSE,
family = "gaussian",
lambda = 2e-2,
return_lasso = TRUE
))
})
test_that("Training: Number of rows do not match.", {
expect_error(fit_hal(
X = x,
Y = y,
X_unpenalized = as.matrix(a[-1]),
yolo = FALSE,
family = "gaussian",
lambda = 2e-2,
fit_control = list(use_min = TRUE, cv_select = FALSE),
return_lasso = TRUE
))
})
yhat <- predict(hal_fit, new_data = x, new_X_unpenalized = as.matrix(a))
test_that("Predict: input not a matrix.", {
expect_error(predict(hal_fit, new_data = x, new_X_unpenalized = a))
})
test_that("Predict: new_X_unpenalized not supplied when used in training.", {
expect_error(predict(hal_fit, new_data = x, new_X_unpenalized = NULL))
})
test_that("Predict: Number of rows not match.", {
expect_error(
predict(hal_fit, new_data = x, new_X_unpenalized = as.matrix(a[-1]))
)
})
test_that("Predict: Number of columns do not match those from training.", {
expect_error(predict(hal_fit, new_data = x, new_X_unpenalized = cbind(a, a)))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.