| Lrnr_multiple_ts | R Documentation |
Stratify univariable time-series learners by time-series
R6Class object.
Learner object with methods for training and prediction. See
Lrnr_base for documentation on learners.
learner="learner"An initialized Lrnr_* object.
variable_stratify="variable_stratify"A character
giving the variable in the covariates on which to stratify. Supports only
variables with discrete levels coded as numeric.
...Other parameters passed directly to
learner$train. See its documentation for details.
Other Learners:
Custom_chain,
Lrnr_HarmonicReg,
Lrnr_arima,
Lrnr_bartMachine,
Lrnr_base,
Lrnr_bayesglm,
Lrnr_caret,
Lrnr_cv_selector,
Lrnr_cv,
Lrnr_dbarts,
Lrnr_define_interactions,
Lrnr_density_discretize,
Lrnr_density_hse,
Lrnr_density_semiparametric,
Lrnr_earth,
Lrnr_expSmooth,
Lrnr_gam,
Lrnr_ga,
Lrnr_gbm,
Lrnr_glm_fast,
Lrnr_glm_semiparametric,
Lrnr_glmnet,
Lrnr_glmtree,
Lrnr_glm,
Lrnr_grfcate,
Lrnr_grf,
Lrnr_gru_keras,
Lrnr_gts,
Lrnr_h2o_grid,
Lrnr_hal9001,
Lrnr_haldensify,
Lrnr_hts,
Lrnr_independent_binomial,
Lrnr_lightgbm,
Lrnr_lstm_keras,
Lrnr_mean,
Lrnr_multivariate,
Lrnr_nnet,
Lrnr_nnls,
Lrnr_optim,
Lrnr_pca,
Lrnr_pkg_SuperLearner,
Lrnr_polspline,
Lrnr_pooled_hazards,
Lrnr_randomForest,
Lrnr_ranger,
Lrnr_revere_task,
Lrnr_rpart,
Lrnr_rugarch,
Lrnr_screener_augment,
Lrnr_screener_coefs,
Lrnr_screener_correlation,
Lrnr_screener_importance,
Lrnr_sl,
Lrnr_solnp_density,
Lrnr_solnp,
Lrnr_stratified,
Lrnr_subset_covariates,
Lrnr_svm,
Lrnr_tsDyn,
Lrnr_ts_weights,
Lrnr_xgboost,
Pipeline,
Stack,
define_h2o_X(),
undocumented_learner
library(origami)
library(dplyr)
set.seed(123)
# Simulate simple AR(2) process
data <- matrix(arima.sim(model = list(ar = c(0.9, -0.2)), n = 200))
id <- c(rep("Series_1", 50), rep("Series_2", 50), rep("Series_3", 50), rep("Series_4", 50))
data <- data.frame(data)
data$id <- as.factor(id)
data <- data %>%
group_by(id) %>%
dplyr::mutate(time = 1:n())
data$W1 <- rbinom(200, 1, 0.6)
data$W2 <- rbinom(200, 1, 0.2)
folds <- origami::make_folds(data,
t = max(data$time),
id = data$id,
time = data$time,
fold_fun = folds_rolling_window_pooled,
window_size = 20,
validation_size = 15,
gap = 0,
batch = 10
)
task <- sl3_Task$new(
data = data, outcome = "data",
time = "time", id = "id",
covariates = c("W1", "W2"),
folds = folds
)
train_task <- training(task, fold = task$folds[[1]])
valid_task <- validation(task, fold = task$folds[[1]])
lrnr_arima <- Lrnr_arima$new()
multiple_ts_arima <- Lrnr_multiple_ts$new(learner = lrnr_arima)
multiple_ts_arima_fit <- multiple_ts_arima$train(train_task)
multiple_ts_arima_preds <- multiple_ts_arima_fit$predict(valid_task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.