Lrnr_solnp: Nonlinear Optimization via Augmented Lagrange

Description Format Value Parameters See Also Examples

Description

This meta-learner provides fitting procedures for any pairing of loss or risk function and metalearner function, subject to constraints. The optimization problem is solved by making use of solnp, using Lagrange multipliers. An important note from the solnp documentation states that the control parameters tol and delta are key in getting any possibility of successful convergence, therefore it is suggested that the user change these appropriately to reflect their problem specification. For further details, consult the documentation of the Rsolnp package.

Format

An R6Class object inheriting from Lrnr_base.

Value

A learner object inheriting from Lrnr_base with methods for training and prediction. For a full list of learner functionality, see the complete documentation of Lrnr_base.

Parameters

See Also

Other Learners: Custom_chain, Lrnr_HarmonicReg, Lrnr_arima, Lrnr_bartMachine, Lrnr_base, Lrnr_bayesglm, Lrnr_bilstm, Lrnr_caret, Lrnr_cv_selector, Lrnr_cv, Lrnr_dbarts, Lrnr_define_interactions, Lrnr_density_discretize, Lrnr_density_hse, Lrnr_density_semiparametric, Lrnr_earth, Lrnr_expSmooth, Lrnr_gam, Lrnr_ga, Lrnr_gbm, Lrnr_glm_fast, Lrnr_glmnet, Lrnr_glm, Lrnr_grf, Lrnr_gru_keras, Lrnr_gts, Lrnr_h2o_grid, Lrnr_hal9001, Lrnr_haldensify, Lrnr_hts, Lrnr_independent_binomial, Lrnr_lightgbm, Lrnr_lstm_keras, Lrnr_mean, Lrnr_multiple_ts, Lrnr_multivariate, Lrnr_nnet, Lrnr_nnls, Lrnr_optim, Lrnr_pca, Lrnr_pkg_SuperLearner, Lrnr_polspline, Lrnr_pooled_hazards, Lrnr_randomForest, Lrnr_ranger, Lrnr_revere_task, Lrnr_rpart, Lrnr_rugarch, Lrnr_screener_augment, Lrnr_screener_coefs, Lrnr_screener_correlation, Lrnr_screener_importance, Lrnr_sl, Lrnr_solnp_density, Lrnr_stratified, Lrnr_subset_covariates, Lrnr_svm, Lrnr_tsDyn, Lrnr_ts_weights, Lrnr_xgboost, Pipeline, Stack, define_h2o_X(), undocumented_learner

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
# define ML task
data(cpp_imputed)
covs <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs")
task <- sl3_Task$new(cpp_imputed, covariates = covs, outcome = "haz")

# build relatively fast learner library (not recommended for real analysis)
lasso_lrnr <- Lrnr_glmnet$new()
glm_lrnr <- Lrnr_glm$new()
ranger_lrnr <- Lrnr_ranger$new()
lrnrs <- c(lasso_lrnr, glm_lrnr, ranger_lrnr)
names(lrnrs) <- c("lasso", "glm", "ranger")
lrnr_stack <- make_learner(Stack, lrnrs)

# instantiate SL with GA metalearner
solnp_meta <- Lrnr_solnp$new()
sl <- Lrnr_sl$new(lrnr_stack, solnp_meta)
sl_fit <- sl$train(task)

jeremyrcoyle/sl3 documentation built on Feb. 3, 2022, 9:12 a.m.