Description Usage Arguments Value
Find fitting models and test them using given metrics on the test dataset
1 2 3 4 5 6 7 8 | find_model(train, test, response, models, metrics,
parameter_sample_rate = 1, seed = 1, prepend_data_checker = T,
on_missing_column = c("error", "add")[1],
on_extra_column = c("remove", "error")[1],
on_type_error = c("ignore", "error")[1], verbose = T,
save_model = F, preprocess_pipes = list(function(train, test)
return(list(train = train, test = train, .predict = function(data)
return(data)))))
|
train |
The training dataset |
test |
The testing dataset |
response |
The response column as a string |
models |
A list of models. Each model should be a list, containing at least a training function The If a parameter only takes a single value, you can use a vector to store options. Otherwise use a list. You can use |
metrics |
A list of metrics (functions) that need to be calculated on the train and test response and predictions |
parameter_sample_rate |
Optional parameter. If set in the range |
seed |
Random seed to set each time before a model is trained |
prepend_data_checker |
Flag indicating if |
on_missing_column |
See |
on_extra_column |
See |
on_type_error |
See |
verbose |
Should intermediate updates be printed. |
save_model |
Flag indicating if the generated models should be saved. Defaults to False. |
preprocess_pipes |
List of preprocessing pipelines generated using |
A dataframe containing the training function, a list of parameters used to train the function, and one column for each metric / dataset combination.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.