#' Flexibly-shaped Spatial Scan Test
#'
#' \code{flex_test} performs the flexibly-shaped scan test
#' of Tango and Takahashi (2005).
#'
#' The test is performed using the spatial scan test based
#' on the Poisson test statistic and a fixed number of
#' cases. The first cluster is the most likely to be a
#' cluster. If no significant clusters are found, then the
#' most likely cluster is returned (along with a warning).
#'
#' @inheritParams rflex.test
#' @param lonlat Deprecated in favor of \code{longlat}.
#' @param ... Not used.
#'
#' @return Returns a list of length two of class scan. The
#' first element (clusters) is a list containing the
#' significant, non-ovlappering clusters, and has the the
#' following components:
#' @author Joshua French
#' @export
#' @seealso \code{\link{print.smerc_cluster}},
#' \code{\link{summary.smerc_cluster}},
#' \code{\link{plot.smerc_cluster}},
#' \code{\link{scan.stat}}, \code{\link{scan.test}}
#' @references Tango, T., & Takahashi, K. (2005). A flexibly
#' shaped spatial scan statistic for detecting clusters.
#' International journal of health geographics, 4(1), 11.
#' Kulldorff, M. (1997) A spatial scan statistic.
#' Communications in Statistics -- Theory and Methods 26,
#' 1481-1496.
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- with(nydf, cbind(longitude, latitude))
#' out <- flex_test(
#' coords = coords, cases = floor(nydf$cases),
#' w = nyw, k = 3,
#' pop = nydf$pop, nsim = 49,
#' alpha = 0.12, longlat = TRUE
#' )
#'
#' # better plotting
#' if (require("sf", quietly = TRUE)) {
#' data(nysf)
#' plot(st_geometry(nysf), col = color.clusters(out))
#' }
flex_test <- function(coords, cases, pop, w, k = 10,
ex = sum(cases) / sum(pop) * pop,
type = "poisson", nsim = 499,
alpha = 0.1, longlat = FALSE,
cl = NULL,
lonlat = longlat, ...) {
if (!identical(lonlat, longlat)) {
longlat <- lonlat
warning("lonlat is deprecated. Please use longlat.")
}
# arg_check_scan_test(coords, cases, pop, ex, nsim, alpha,
# nsim + 1, 0.5, longlat, FALSE, k = k,
# w = w, type = type)
coords <- as.matrix(coords)
# get list of nearest neighbors
nn <- knn(coords, longlat = longlat, k = k)
# get vector of log primes
lprimes <- log(primes100k[seq_len(nrow(w))])
# convert type to integer
itype <- ifelse(type == "poisson", 0, 1)
# run flex_test via cpp
pruned <- flex_test_cpp(
nn = nn, cases = cases, pop = pop, w = w, k = k,
ex = ex, type = itype, nsim = nsim, alpha = alpha,
lprimes = lprimes, verbose = TRUE
)
pruned <- sig_noc(
tobs = pruned$tobs, zones = pruned$zones,
pvalue = pruned$pvalues, alpha = alpha,
order_by = "tobs"
)
# pruned2 = NULL
# pruned2$zones = logical2zones(pruned$zones, nn)
# # convert tobs and pvalues from nested lists of vectors to vectors
# pruned2$tobs = unlist(pruned$tobs)
# pruned2$pvalue = unlist(pruned$pvalue)
# pruned3 = sig_noc(tobs = pruned2$tobs, zones = pruned2$zones,
# pvalue = pruned2$pvalue, alpha = 1,
# order_by = "tobs")
# return(pruned3)
# convert z from nested list of logicals to list of zones
# pruned$zones = logical2zones(pruned$zones, nn)
# # convert tobs and pvalues from nested lists of vectors to vectors
# pruned$tobs = unlist(pruned$tobs)
# pruned$pvalue = unlist(pruned$pvalue)
# pruned = sig_noc(tobs = pruned$tobs, zones = pruned$zones,
# pvalue = pruned$pvalue, alpha = alpha,
# order_by = "tobs")
smerc_cluster(
tobs = pruned$tobs, zones = pruned$zones,
pvalue = pruned$pvalue, coords = coords,
cases = cases, pop = pop, ex = ex,
longlat = longlat, method = "flexible",
rel_param = list(
type = type,
simdist = "multinomial",
nsim = nsim,
k = k,
nn = nn
),
alpha = alpha,
w = w, d = NULL
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.