#' Perform \code{uls.test} on simulated data
#'
#' \code{uls.sim} efficiently performs
#' \code{\link{uls.test}} on a simulated data set. The
#' function is meant to be used internally by the
#' \code{\link{uls.test}} function, but is informative for
#' better understanding the implementation of the test.
#'
#' @inheritParams scan.sim
#' @inheritParams uls.test
#' @inherit scan.sim return
#' @export
#'
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- with(nydf, cbind(longitude, latitude))
#' cases <- floor(nydf$cases)
#' pop <- nydf$pop
#' ty <- sum(cases)
#' ex <- ty / sum(pop) * pop
#' tsim <- uls.sim(1, ty, ex, nyw, pop = pop, ubpop = 0.5)
uls.sim <- function(nsim = 1, ty, ex, w, pop, ubpop,
type = "poisson", check.unique = FALSE,
cl = NULL) {
tpop <- sum(pop)
arg_check_sim(
nsim = nsim, ty = ty, ex = ex, type = type,
tpop = tpop, w = w, ubpop = ubpop,
static = FALSE
)
# compute max test stat for nsim simulated data sets
tsim <- pbapply::pblapply(seq_len(nsim), function(i) {
# simulate new data
ysim <- c(stats::rmultinom(1, size = ty, prob = ex))
zones <- uls.zones(
cases = ysim, pop = pop, w = w,
ubpop = ubpop,
check.unique = check.unique
)
# compute test statistics for each zone
yin <- zones.sum(zones, ysim)
if (type == "poisson") {
ein <- zones.sum(zones, ex)
tall <- stat.poisson(yin, ty - yin, ein, ty - ein)
} else if (type == "binomial") {
popin <- zones.sum(zones, pop)
tall <- stat.binom(
yin, ty - yin, ty,
popin, tpop - popin, tpop
)
}
max(tall)
}, cl = cl)
unlist(tsim, use.names = FALSE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.